Suppr超能文献

药物设计中的多尺度方法:在寻找治疗方法中架起化学与生物复杂性之间的桥梁

Multiscale Methods in Drug Design Bridge Chemical and Biological Complexity in the Search for Cures.

作者信息

Amaro Rommie E, Mulholland Adrian J

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0304.

Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.

出版信息

Nat Rev Chem. 2018 Apr;2(4). doi: 10.1038/s41570-018-0148. Epub 2018 Apr 11.

Abstract

Drug action is inherently multiscale: it connects molecular interactions to emergent properties at cellular and larger scales. Simulation techniques at each of these different scales are already central to drug design and development, but methods capable of connecting across these scales will extend understanding of complex mechanisms and the ability to predict biological effects. Improved algorithms, ever-more-powerful computing architectures and the accelerating growth of rich datasets are driving advances in multiscale modeling methods capable of bridging chemical and biological complexity from the atom to the cell. Particularly exciting is the development of highly detailed, structure-based, physical simulations of biochemical systems, which are now able to access experimentally relevant timescales for large systems and, at the same time, achieve unprecedented accuracy. In this Perspective, we discuss how emerging data-rich, physics-based multiscale approaches are of the cusp of realizing long-promised impact in the discovery, design and development of novel therapeutics. We highlight emerging methods and applications in this growing field, and outline how different scales can be combined in practical modelling and simulation strategies.

摘要

药物作用本质上是多尺度的

它将分子相互作用与细胞及更大尺度上的涌现特性联系起来。这些不同尺度上的模拟技术已经是药物设计和开发的核心,但能够跨尺度连接的方法将扩展对复杂机制的理解以及预测生物学效应的能力。改进的算法、功能越来越强大的计算架构以及丰富数据集的加速增长,正在推动多尺度建模方法的进步,这些方法能够跨越从原子到细胞的化学和生物学复杂性。特别令人兴奋的是生物化学系统高度详细的、基于结构的物理模拟的发展,现在这些模拟能够在实验相关的时间尺度上处理大型系统,同时实现前所未有的准确性。在这篇观点文章中,我们讨论新兴的、基于数据和物理的多尺度方法如何正处于在新型治疗药物的发现、设计和开发中实现长期承诺的影响的关键节点。我们强调这个不断发展的领域中的新兴方法和应用,并概述在实际建模和模拟策略中如何将不同尺度结合起来。

相似文献

1
Multiscale Methods in Drug Design Bridge Chemical and Biological Complexity in the Search for Cures.
Nat Rev Chem. 2018 Apr;2(4). doi: 10.1038/s41570-018-0148. Epub 2018 Apr 11.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Multiscale simulation approaches to modeling drug-protein binding.
Curr Opin Struct Biol. 2020 Apr;61:213-221. doi: 10.1016/j.sbi.2020.01.014. Epub 2020 Feb 26.
5
Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure.
J Chem Theory Comput. 2023 May 9;19(9):2658-2675. doi: 10.1021/acs.jctc.2c01018. Epub 2023 Apr 19.
6
Modelling biological complexity: a physical scientist's perspective.
J R Soc Interface. 2005 Sep 22;2(4):267-80. doi: 10.1098/rsif.2005.0045.
7
Multiscale Modeling in the Clinic: Drug Design and Development.
Ann Biomed Eng. 2016 Sep;44(9):2591-610. doi: 10.1007/s10439-016-1563-0. Epub 2016 Feb 17.
8
Integrated multiscale biomaterials experiment and modelling: a perspective.
Interface Focus. 2016 Feb 6;6(1):20150098. doi: 10.1098/rsfs.2015.0098.
9
Multiscale biomolecular simulations in the exascale era.
Curr Opin Struct Biol. 2024 Jun;86:102821. doi: 10.1016/j.sbi.2024.102821. Epub 2024 Apr 29.
10
Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry.
Crit Rev Food Sci Nutr. 2021;61(15):2455-2470. doi: 10.1080/10408398.2020.1809992. Epub 2020 Sep 3.

引用本文的文献

2
Physics-Based Solubility Prediction for Organic Molecules.
Chem Rev. 2025 Aug 13;125(15):7057-7098. doi: 10.1021/acs.chemrev.4c00855. Epub 2025 Jul 29.
3
A Computational Perspective to Intermolecular Interactions and the Role of the Solvent on Regulating Protein Properties.
Chem Rev. 2025 Aug 13;125(15):7023-7056. doi: 10.1021/acs.chemrev.4c00807. Epub 2025 Jul 28.
4
Conformational Dynamics and Activation of Membrane-Associated Human Group IVA Cytosolic Phospholipase A (cPLA).
J Phys Chem Lett. 2025 Jun 19;16(24):6059-6065. doi: 10.1021/acs.jpclett.5c00860. Epub 2025 Jun 9.
7
A Reflection on the Use of Molecular Simulation to Respond to SARS-CoV-2 Pandemic Threats.
J Phys Chem Lett. 2025 Apr 3;16(13):3249-3263. doi: 10.1021/acs.jpclett.4c03654. Epub 2025 Mar 21.
9
3D physiologically-informed deep learning for drug discovery of a novel vascular endothelial growth factor receptor-2 (VEGFR2).
Heliyon. 2024 Aug 8;10(16):e35769. doi: 10.1016/j.heliyon.2024.e35769. eCollection 2024 Aug 30.
10
Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review.
Pharmaceuticals (Basel). 2024 Jun 17;17(6):795. doi: 10.3390/ph17060795.

本文引用的文献

1
L718Q mutant EGFR escapes covalent inhibition by stabilizing a non-reactive conformation of the lung cancer drug osimertinib.
Chem Sci. 2018 Feb 12;9(10):2740-2749. doi: 10.1039/c7sc04761d. eCollection 2018 Mar 14.
2
Multiscale analysis of enantioselectivity in enzyme-catalysed 'lethal synthesis' using projector-based embedding.
R Soc Open Sci. 2018 Feb 14;5(2):171390. doi: 10.1098/rsos.171390. eCollection 2018 Feb.
4
cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets.
Eurographics Workshop Vis Comput Biomed. 2015;2015:61-70. doi: 10.2312/vcbm.20151209.
5
A Data-Driven Perspective on the Hierarchical Assembly of Molecular Structures.
J Chem Theory Comput. 2018 Jan 9;14(1):453-460. doi: 10.1021/acs.jctc.7b00990. Epub 2017 Dec 22.
6
Molecular simulations of cellular processes.
Biophys Rev. 2017 Dec;9(6):941-958. doi: 10.1007/s12551-017-0363-6. Epub 2017 Nov 28.
8
Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models.
Biophys J. 2017 Aug 22;113(4):785-793. doi: 10.1016/j.bpj.2017.07.009.
9
Drug target residence time: a misleading concept.
Drug Discov Today. 2018 Jan;23(1):12-16. doi: 10.1016/j.drudis.2017.07.016. Epub 2017 Aug 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验