Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
J Mol Biol. 2019 Nov 22;431(23):4775-4793. doi: 10.1016/j.jmb.2019.04.001. Epub 2019 Apr 4.
The extracellular matrix in macrocolony biofilms of Escherichia coli is arranged in a complex large-scale architecture, with homogenic matrix production close to the surface, whereas zones further below display pronounced local heterogeneity of matrix production, which results in distinct three-dimensional architectural structures. Combining genetics, cryosectioning and fluorescence microscopy of macrocolony biofilms, we demonstrate here in situ that this local matrix heterogeneity is generated by a c-di-GMP-dependent molecular switch characterized by several nested positive and negative feedback loops. In this switch, the trigger phosphodiesterase PdeR is the key component for establishing local heterogeneity in the activation of the transcription factor MlrA, which in turn activates expression of the major matrix regulator CsgD. Upon its release of direct inhibition by PdeR, the second switch component, the diguanylate cyclase DgcM, activates MlrA by direct interaction. Antagonistically acting PdeH and DgcE provide for a PdeR-sensed c-di-GMP input into this switch and-via their spatially differentially controlled expression-generate the long-range vertical asymmetry of the matrix architecture. Using flow cytometry, we show heterogeneity of CsgD expression to also occur in spatially unstructured planktonic cultures, where it is controlled by the same c-di-GMP circuitry as in macrocolony biofilms. Quantification by flow cytometry also showed CsgD subpopulations with distinct CsgD expression levels and revealed an additional fine-tuning feedback within the PdeR/DgcM-mediated switch that depends on c-di-GMP synthesis by DgcM. Finally, local heterogeneity of matrix production was found to be crucial for the tissue-like elasticity that allows for large-scale wrinkling and folding of macrocolony biofilms.
大肠杆菌宏观菌落生物膜的细胞外基质排列成复杂的大规模结构,表面附近的基质产生具有同质性,而下面的区域则表现出明显的基质产生局部异质性,从而形成独特的三维结构。通过对宏观菌落生物膜的遗传学、冷冻切片和荧光显微镜分析,我们在此证明,这种局部基质异质性是由 c-di-GMP 依赖性分子开关产生的,该开关具有几个嵌套的正反馈和负反馈回路。在这个开关中,触发磷酸二酯酶 PdeR 是在 MlrA 转录因子的激活中建立局部异质性的关键组成部分,而 MlrA 又反过来激活主要基质调节剂 CsgD 的表达。在 PdeR 释放对其的直接抑制后,第二个开关组件,双鸟苷酸环化酶 DgcM,通过直接相互作用激活 MlrA。拮抗作用的 PdeH 和 DgcE 为这个开关提供了 PdeR 感应的 c-di-GMP 输入,并通过其空间差异控制的表达,产生了基质结构的长程垂直不对称性。通过流式细胞术,我们表明 CsgD 表达的异质性也发生在空间无结构的浮游培养物中,其受到与宏观菌落生物膜中相同的 c-di-GMP 电路的控制。流式细胞术的定量分析还显示出 CsgD 表达水平不同的 CsgD 亚群,并揭示了 PdeR/DgcM 介导的开关中的另一个精细调节反馈,该反馈依赖于 DgcM 的 c-di-GMP 合成。最后,发现基质产生的局部异质性对于允许宏观菌落生物膜大规模起皱和折叠的组织样弹性至关重要。