Suppr超能文献

一种用于识别指导乳腺癌治疗的基因生物标志物的机器学习方法。

A Machine Learning Approach for Identifying Gene Biomarkers Guiding the Treatment of Breast Cancer.

作者信息

Tabl Ashraf Abou, Alkhateeb Abedalrhman, ElMaraghy Waguih, Rueda Luis, Ngom Alioune

机构信息

Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, ON, Canada.

School of Computer Science, University of Windsor, Windsor, ON, Canada.

出版信息

Front Genet. 2019 Mar 27;10:256. doi: 10.3389/fgene.2019.00256. eCollection 2019.

Abstract

Genomic profiles among different breast cancer survivors who received similar treatment may provide clues about the key biological processes involved in the cells and finding the right treatment. More specifically, such profiling may help personalize the treatment based on the patients' gene expression. In this paper, we present a hierarchical machine learning system that predicts the 5-year survivability of the patients who underwent though specific therapy; The classes are built on the combination of two parts that are the survivability information and the given therapy. For the survivability information part, it defines whether the patient survives the 5-years interval or deceased. While the therapy part denotes the therapy has been taken during that interval, which includes hormone therapy, radiotherapy, or surgery, which totally forms six classes. The Model classifies one class vs. the rest at each node, which makes the tree-based model creates five nodes. The model is trained using a set of standard classifiers based on a comprehensive study dataset that includes genomic profiles and clinical information of 347 patients. A combination of feature selection methods and a prediction method are applied on each node to identify the genes that can predict the class at that node, the identified genes for each class may serve as potential biomarkers to the class's treatment for better survivability. The results show that the model identifies the classes with high-performance measurements. An exhaustive analysis based on relevant literature shows that some of the potential biomarkers are strongly related to breast cancer survivability and cancer in general.

摘要

在接受相似治疗的不同乳腺癌幸存者中,基因组概况可能会为细胞中涉及的关键生物学过程提供线索,并有助于找到合适的治疗方法。更具体地说,这种概况分析可能有助于根据患者的基因表达实现个性化治疗。在本文中,我们提出了一种分层机器学习系统,用于预测接受特定治疗的患者的5年生存率;这些类别基于生存信息和给定治疗这两部分的组合构建而成。对于生存信息部分,它定义了患者是否在5年期间存活或死亡。而治疗部分表示在该期间接受的治疗,包括激素治疗、放射治疗或手术,总共形成六个类别。该模型在每个节点将一个类别与其他类别进行分类,这使得基于树的模型创建五个节点。该模型使用一组标准分类器进行训练,所依据的综合研究数据集包含347名患者的基因组概况和临床信息。在每个节点应用特征选择方法和预测方法的组合,以识别能够预测该节点类别的基因,为每个类别识别出的基因可能作为该类别治疗以实现更好生存率的潜在生物标志物。结果表明,该模型能够以高性能指标识别这些类别。基于相关文献的详尽分析表明,一些潜在的生物标志物与乳腺癌生存率以及一般癌症密切相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5923/6446069/6e5bd924ae5f/fgene-10-00256-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验