Suppr超能文献

高亲和力抗糖抗体:挑战与策略。

High-affinity anti-glycan antibodies: challenges and strategies.

机构信息

Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.

Department of Chemistry and Biochemistry, Brigham Young University, UT, USA.

出版信息

Curr Opin Immunol. 2019 Aug;59:65-71. doi: 10.1016/j.coi.2019.03.004. Epub 2019 Apr 28.

Abstract

High-affinity binding of antibodies provides for increased specificity and usually higher effector functions in vivo. This goal, well documented in cancer immunotherapy, is very relevant to vaccines as well, and has particularly significant application toward glycan antigens. The inability to elicit high-affinity antibodies has limited potential applications of glycan-based immunogens, giving rise to insufficient population coverage due to low titers and short duration of protection. That such vaccines have achieved widespread use in spite of these shortcomings highlights the surpassing importance of glycans as prophylactic immunological targets. New advances in the combination of synthetic chemistry, bioconjugation, and mechanistic immunology offer the possibility to vastly expand the number of potential molecular targets in cancer and infectious diseases by opening a wider world of carbohydrate structures to immunological recognition and high-affinity response.

摘要

抗体的高亲和力结合提供了更高的特异性,并通常在体内具有更高的效应功能。这一目标在癌症免疫治疗中已有充分的记录,与疫苗也非常相关,并且在糖抗原方面具有特别重要的应用。由于滴度低和保护持续时间短,无法诱导高亲和力抗体,限制了基于聚糖的免疫原的潜在应用,导致人群覆盖率不足。尽管存在这些缺点,这些疫苗仍得到广泛应用,这突出表明糖作为预防性免疫靶标具有非常重要的意义。合成化学、生物缀合和机制免疫学的新进展为通过将更广泛的碳水化合物结构引入免疫识别和高亲和力反应,为癌症和传染病中的潜在分子靶标数量的大幅增加提供了可能性。

相似文献

1
High-affinity anti-glycan antibodies: challenges and strategies.
Curr Opin Immunol. 2019 Aug;59:65-71. doi: 10.1016/j.coi.2019.03.004. Epub 2019 Apr 28.
2
[Carbohydrates and vaccines: from purified polysaccharides to semi-synthetic glycoconjugate vaccines].
Ann Pharm Fr. 2007 Jan;65(1):14-32. doi: 10.1016/s0003-4509(07)90014-0.
3
Targeting Glycans on Human Pathogens for Vaccine Design.
Curr Top Microbiol Immunol. 2020;428:129-163. doi: 10.1007/82_2018_103.
4
Using the glycan toolbox for pathogenic interventions and glycan immunotherapy.
Curr Opin Biotechnol. 2018 Jun;51:24-31. doi: 10.1016/j.copbio.2017.11.003. Epub 2017 Nov 22.
5
Polysaccharides, mimotopes and vaccines for fungal and encapsulated pathogens.
Trends Microbiol. 2001 Sep;9(9):445-51. doi: 10.1016/s0966-842x(01)02134-5.
6
Synthetic carbohydrate-based vaccines: challenges and opportunities.
J Biomed Sci. 2020 Jan 3;27(1):9. doi: 10.1186/s12929-019-0591-0.
7
T cells control the generation of nanomolar-affinity anti-glycan antibodies.
J Clin Invest. 2017 Apr 3;127(4):1491-1504. doi: 10.1172/JCI91192. Epub 2017 Mar 13.
8
Glycan mediated immune responses to tumor cells.
Hum Vaccin. 2011 Jan-Feb;7 Suppl:156-65. doi: 10.4161/hv.7.0.14578. Epub 2011 Jan 1.
9
Developing a vaccine against aspergillosis.
Med Mycol. 2011 Apr;49 Suppl 1:S170-6. doi: 10.3109/13693786.2010.497775. Epub 2010 Jul 7.
10
Human and translational immunology in the third millennium: progress, challenges and opportunities.
Nat Immunol. 2019 Dec;20(12):1568-1573. doi: 10.1038/s41590-019-0543-6.

引用本文的文献

1
Broad-spectrum synthetic carbohydrate receptors (SCRs) inhibit viral entry across multiple virus families.
Sci Adv. 2025 Aug 29;11(35):eady3554. doi: 10.1126/sciadv.ady3554. Epub 2025 Aug 27.
2
Achieving cell-type selectivity in metabolic oligosaccharide engineering.
RSC Chem Biol. 2025 Jul 29. doi: 10.1039/d5cb00168d.
3
Biophysical fitness landscape design traps viral evolution.
bioRxiv. 2025 Jul 25:2025.03.30.646233. doi: 10.1101/2025.03.30.646233.
5
Mutant glycosidases for labeling sialoglycans with high specificity and affinity.
Nat Commun. 2025 Feb 7;16(1):1427. doi: 10.1038/s41467-025-56629-9.
6
Substructure-Specific Antibodies Against Fentanyl Derivatives.
ACS Nano. 2025 Jan 28;19(3):3714-3725. doi: 10.1021/acsnano.4c14369. Epub 2025 Jan 10.
7
Biospecific Chemistry for Covalent Linking of Biomacromolecules.
Chem Rev. 2024 Jul 10;124(13):8516-8549. doi: 10.1021/acs.chemrev.4c00066. Epub 2024 Jun 24.
8
A bispecific, crosslinking lectibody activates cytotoxic T cells and induces cancer cell death.
J Transl Med. 2022 Dec 9;20(1):578. doi: 10.1186/s12967-022-03794-w.
9
Genetically encoded chemical crosslinking of carbohydrate.
Nat Chem. 2023 Jan;15(1):33-42. doi: 10.1038/s41557-022-01059-z. Epub 2022 Oct 10.

本文引用的文献

1
Improving vaccines against using synthetic glycans.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13353-13358. doi: 10.1073/pnas.1811862115. Epub 2018 Dec 7.
2
3
Glycan-directed CAR-T cells.
Glycobiology. 2018 Sep 1;28(9):656-669. doi: 10.1093/glycob/cwy008.
4
Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells.
Cell. 2018 Jan 25;172(3):517-533.e20. doi: 10.1016/j.cell.2017.11.036. Epub 2017 Dec 14.
5
T cells control the generation of nanomolar-affinity anti-glycan antibodies.
J Clin Invest. 2017 Apr 3;127(4):1491-1504. doi: 10.1172/JCI91192. Epub 2017 Mar 13.
6
Hyper IgM Syndrome: a Report from the USIDNET Registry.
J Clin Immunol. 2016 Jul;36(5):490-501. doi: 10.1007/s10875-016-0291-4. Epub 2016 May 17.
7
Hib Vaccines: Past, Present, and Future Perspectives.
J Immunol Res. 2016;2016:7203587. doi: 10.1155/2016/7203587. Epub 2016 Jan 20.
8
Anti-Infectious Human Vaccination in Historical Perspective.
Int Rev Immunol. 2016 May 3;35(3):260-90. doi: 10.3109/08830185.2015.1082177. Epub 2015 Nov 25.
9
Sugar recognition and protein-protein interaction of mammalian lectins conferring diverse functions.
Curr Opin Struct Biol. 2015 Oct;34:108-15. doi: 10.1016/j.sbi.2015.08.005. Epub 2015 Sep 29.
10
Efficacy of ABX196, a new NKT agonist, in prophylactic human vaccination.
Vaccine. 2014 Oct 21;32(46):6138-45. doi: 10.1016/j.vaccine.2014.08.070. Epub 2014 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验