Suppr超能文献

端粒基因治疗:治疗各种疾病的治疗目标两极分化。

Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases.

机构信息

Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.

Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Korea.

出版信息

Cells. 2019 Apr 28;8(5):392. doi: 10.3390/cells8050392.

Abstract

Modulation of telomerase maintenance by gene therapy must meet two polarizing requirements to achieve different therapeutic outcomes: Anti-aging/regenerative applications require upregulation, while anticancer applications necessitate suppression of various genes integral to telomere maintenance (e.g., telomerase, telomerase RNA components, and shelterin complex). Patients suffering from aging-associated illnesses often exhibit telomere attrition, which promotes chromosomal instability and cellular senescence, thus requiring the transfer of telomere maintenance-related genes to improve patient outcomes. However, reactivation and overexpression of telomerase are observed in 85% of cancer patients; this process is integral to cancer immortality. Thus, telomere-associated genes in the scope of cancer gene therapy must be inactivated or inhibited to induce anticancer effects. These contradicting requirements for achieving different therapeutic outcomes mean that any vector-mediated upregulation of telomere-associated genes must be accompanied by rigorous evaluation of potential oncogenesis. Thus, this review aims to discuss how telomere-associated genes are being targeted or utilized in various gene therapy applications and provides some insight into currently available safety hazard assessments.

摘要

基因治疗对端粒酶维持的调控必须满足两个极端的要求,才能实现不同的治疗效果:抗衰老/再生应用需要上调,而抗癌应用则需要抑制各种与端粒维持相关的基因(例如端粒酶、端粒酶 RNA 成分和庇护复合物)。患有与衰老相关疾病的患者通常表现出端粒损耗,这会导致染色体不稳定和细胞衰老,因此需要转移端粒维持相关基因以改善患者的治疗效果。然而,85%的癌症患者中观察到端粒酶的重新激活和过度表达;这一过程是癌症永生的关键。因此,癌症基因治疗范围内的端粒相关基因必须失活或抑制,以诱导抗癌作用。这些相互矛盾的治疗效果要求意味着任何载体介导的端粒相关基因上调都必须伴随着对潜在致癌性的严格评估。因此,本综述旨在讨论如何在各种基因治疗应用中靶向或利用端粒相关基因,并提供一些关于当前可用安全风险评估的见解。

相似文献

2
Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis.
Oncotarget. 2017 Jan 31;8(5):7301-7314. doi: 10.18632/oncotarget.14236.
3
Control of Cellular Aging, Tissue Function, and Cancer by p53 Downstream of Telomeres.
Cold Spring Harb Perspect Med. 2017 May 1;7(5):a026088. doi: 10.1101/cshperspect.a026088.
4
Platinum(II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells.
Biochimie. 2016 Feb;121:287-97. doi: 10.1016/j.biochi.2015.12.015. Epub 2015 Dec 25.
5
Telomere length maintenance in aging and carcinogenesis.
Int J Oncol. 2000 Nov;17(5):981-9. doi: 10.3892/ijo.17.5.981.
6
Revisiting Telomere Shortening in Cancer.
Cells. 2019 Jan 31;8(2):107. doi: 10.3390/cells8020107.
9
Telomere/Telomerase system: a new target of statins pleiotropic effect?
Curr Vasc Pharmacol. 2012 Mar;10(2):216-24. doi: 10.2174/157016112799305076.

引用本文的文献

2
Premature aging and metabolic diseases: the impact of telomere attrition.
Front Aging. 2025 Mar 31;6:1541127. doi: 10.3389/fragi.2025.1541127. eCollection 2025.
3
Biomarkers of aging: from molecules and surrogates to physiology and function.
Physiol Rev. 2025 Jul 1;105(3):1609-1694. doi: 10.1152/physrev.00045.2024. Epub 2025 Mar 20.
4
The Plethora of RNA-Protein Interactions Model a Basis for RNA Therapies.
Genes (Basel). 2025 Jan 2;16(1):48. doi: 10.3390/genes16010048.
6
Molecular mechanisms of aging and anti-aging strategies.
Cell Commun Signal. 2024 May 24;22(1):285. doi: 10.1186/s12964-024-01663-1.
7
Antiaging Strategies and Remedies: A Landscape of Research Progress and Promise.
ACS Chem Neurosci. 2024 Feb 7;15(3):408-446. doi: 10.1021/acschemneuro.3c00532. Epub 2024 Jan 12.
8
Prognostic model based on telomere-related genes predicts the risk of oral squamous cell carcinoma.
BMC Oral Health. 2023 Jul 14;23(1):484. doi: 10.1186/s12903-023-03157-x.
10
Metformin's Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease.
Aging Dis. 2022 Jul 11;13(4):970-986. doi: 10.14336/AD.2021.1213.

本文引用的文献

1
Revisiting Telomere Shortening in Cancer.
Cells. 2019 Jan 31;8(2):107. doi: 10.3390/cells8020107.
2
Telomere Biology and Human Phenotype.
Cells. 2019 Jan 19;8(1):73. doi: 10.3390/cells8010073.
3
Emerging roles of telomeric chromatin alterations in cancer.
J Exp Clin Cancer Res. 2019 Jan 17;38(1):21. doi: 10.1186/s13046-019-1030-5.
7
Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mouse health span.
Aging Cell. 2017 Dec;16(6):1353-1368. doi: 10.1111/acel.12677. Epub 2017 Sep 24.
8
Potent antitumor effect of tumor microenvironment-targeted oncolytic adenovirus against desmoplastic pancreatic cancer.
Int J Cancer. 2018 Jan 15;142(2):392-413. doi: 10.1002/ijc.31060. Epub 2017 Oct 9.
9
Synergistic antitumor effect mediated by a paclitaxel-conjugated polymeric micelle-coated oncolytic adenovirus.
Biomaterials. 2017 Nov;145:207-222. doi: 10.1016/j.biomaterials.2017.08.035. Epub 2017 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验