Suppr超能文献

苯丙氨酰-tRNA 合成酶的氧化正向调节翻译质量控制。

Oxidation of phenylalanyl-tRNA synthetase positively regulates translational quality control.

机构信息

The Ohio State University Biochemistry Program, The Ohio State University, Columbus, OH 43210.

Center for RNA Biology, The Ohio State University, Columbus, OH 43210.

出版信息

Proc Natl Acad Sci U S A. 2019 May 14;116(20):10058-10063. doi: 10.1073/pnas.1901634116. Epub 2019 Apr 29.

Abstract

Accurate translation of the genetic code is maintained in part by aminoacyl-tRNA synthetases (aaRS) proofreading mechanisms that ensure correct attachment of a cognate amino acid to a transfer RNA (tRNA). During environmental stress, such as oxidative stress, demands on aaRS proofreading are altered by changes in the availability of cytoplasmic amino acids. For example, oxidative stress increases levels of cytotoxic tyrosine isomers, noncognate amino acids normally excluded from translation by the proofreading activity of phenylalanyl-tRNA synthetase (PheRS). Here we show that oxidation of PheRS induces a conformational change, generating a partially unstructured protein. This conformational change does not affect Phe or Tyr activation or the aminoacylation activity of PheRS. However, in vitro and ex vivo analyses reveal that proofreading activity to hydrolyze Tyr-tRNA is increased during oxidative stress, while the cognate Phe-tRNA aminoacylation activity is unchanged. In HPX, that lack reactive oxygen-scavenging enzymes and accumulate intracellular HO, we found that PheRS proofreading is increased by 11%, thereby providing potential protection against hazardous cytoplasmic -Tyr accumulation. These findings show that in response to oxidative stress, PheRS proofreading is positively regulated without negative effects on the enzyme's housekeeping activity in translation. Our findings also illustrate that while the loss of quality control and mistranslation may be beneficial under some conditions, increased proofreading provides a mechanism for the cell to appropriately respond to environmental changes during oxidative stress.

摘要

遗传密码的准确翻译部分依赖于氨酰-tRNA 合成酶(aaRS)的校对机制,该机制确保将正确的氨基酸与转移 RNA(tRNA)结合。在环境压力下,如氧化应激,细胞质氨基酸的可用性变化会改变 aaRS 的校对要求。例如,氧化应激会增加细胞毒性酪氨酸异构体的水平,这些非对应氨基酸通常会被苯丙氨酰-tRNA 合成酶(PheRS)的校对活性排除在翻译之外。在这里,我们表明 PheRS 的氧化会诱导构象变化,从而产生部分无结构的蛋白质。这种构象变化不会影响 Phe 或 Tyr 的激活或 PheRS 的氨酰化活性。然而,体内和体外分析表明,在氧化应激期间,水解 Tyr-tRNA 的校对活性增加,而对应 Phe-tRNA 的氨酰化活性保持不变。在缺乏活性氧清除酶且细胞内 HO 积累的 HPX 中,我们发现 PheRS 的校对活性增加了 11%,从而为防止有害的细胞质 -Tyr 积累提供了潜在的保护。这些发现表明,在氧化应激下,PheRS 的校对受到积极调节,而不会对酶在翻译中的看家活性产生负面影响。我们的研究结果还表明,尽管在某些条件下失去质量控制和错误翻译可能是有益的,但增加的校对提供了一种机制,使细胞能够在氧化应激期间适当地应对环境变化。

相似文献

1
Oxidation of phenylalanyl-tRNA synthetase positively regulates translational quality control.
Proc Natl Acad Sci U S A. 2019 May 14;116(20):10058-10063. doi: 10.1073/pnas.1901634116. Epub 2019 Apr 29.
3
Multiple Quality Control Pathways Limit Non-protein Amino Acid Use by Yeast Cytoplasmic Phenylalanyl-tRNA Synthetase.
J Biol Chem. 2016 Jul 22;291(30):15796-805. doi: 10.1074/jbc.M116.726828. Epub 2016 May 19.
4
Escherichia coli alanyl-tRNA synthetase maintains proofreading activity and translational accuracy under oxidative stress.
J Biol Chem. 2022 Mar;298(3):101601. doi: 10.1016/j.jbc.2022.101601. Epub 2022 Jan 20.
5
Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code.
Nucleic Acids Res. 2013 Jan;41(2):1104-12. doi: 10.1093/nar/gks1240. Epub 2012 Dec 6.
9
Structural and mutational studies of the amino acid-editing domain from archaeal/eukaryal phenylalanyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14744-9. doi: 10.1073/pnas.0603182103. Epub 2006 Sep 26.
10
Oxidation alters the architecture of the phenylalanyl-tRNA synthetase editing domain to confer hyperaccuracy.
Nucleic Acids Res. 2021 Nov 18;49(20):11800-11809. doi: 10.1093/nar/gkab856.

引用本文的文献

2
Broad-spectrum tolerance to disinfectant-mediated bacterial killing due to mutation of the PheS aminoacyl tRNA synthetase.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2412871122. doi: 10.1073/pnas.2412871122. Epub 2025 Feb 3.
3
From dusty shelves toward the spotlight: growing evidence for Ap4A as an alarmone in maintaining RNA stability and proteostasis.
Curr Opin Microbiol. 2024 Oct;81:102536. doi: 10.1016/j.mib.2024.102536. Epub 2024 Aug 30.
4
Interplay between mistranslation and oxidative stress in .
Arh Hig Rada Toksikol. 2024 Jun 29;75(2):147-154. doi: 10.2478/aiht-2024-75-3834. eCollection 2024 Jun 1.
5
Adaptation of a eukaryote-like ProRS to a prokaryote-like tRNAPro.
Nucleic Acids Res. 2024 Jul 8;52(12):7158-7170. doi: 10.1093/nar/gkae483.
6
Methionyl-tRNA synthetase synthetic and proofreading activities are determinants of antibiotic persistence.
Front Microbiol. 2024 Mar 27;15:1384552. doi: 10.3389/fmicb.2024.1384552. eCollection 2024.
7
Genome-wide screening reveals metabolic regulation of stop-codon readthrough by cyclic AMP.
Nucleic Acids Res. 2023 Oct 13;51(18):9905-9919. doi: 10.1093/nar/gkad725.
8
Protein family neighborhood analyzer-ProFaNA.
PeerJ. 2023 Jul 21;11:e15715. doi: 10.7717/peerj.15715. eCollection 2023.
9
The central role of translation elongation in response to stress.
Biochem Soc Trans. 2023 Jun 28;51(3):959-969. doi: 10.1042/BST20220584.
10
Mutations identified in engineered with a reduced genome.
Front Microbiol. 2023 May 25;14:1189877. doi: 10.3389/fmicb.2023.1189877. eCollection 2023.

本文引用的文献

1
Reversible fold-switching controls the functional cycle of the antitermination factor RfaH.
Nat Commun. 2019 Feb 11;10(1):702. doi: 10.1038/s41467-019-08567-6.
2
The transcriptional regulator VarN contributes to Salmonella Typhimurium growth in macrophages and virulence in mice.
Res Microbiol. 2018 May-Jun;169(4-5):214-221. doi: 10.1016/j.resmic.2018.03.003. Epub 2018 May 8.
3
Reversible inactivation of yeast mitochondrial phenylalanyl-tRNA synthetase under oxidative stress.
Biochim Biophys Acta Gen Subj. 2018 Aug;1862(8):1801-1809. doi: 10.1016/j.bbagen.2018.04.023. Epub 2018 May 1.
4
Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center.
Nucleic Acids Res. 2018 Feb 28;46(4):1945-1957. doi: 10.1093/nar/gkx1308.
5
Salmonella enterica serovar-specific transcriptional reprogramming of infected cells.
PLoS Pathog. 2017 Jul 24;13(7):e1006532. doi: 10.1371/journal.ppat.1006532. eCollection 2017 Jul.
6
Protein oxidation: an overview of metabolism of sulphur containing amino acid, cysteine.
Front Biosci (Schol Ed). 2017 Jan 1;9(1):71-87. doi: 10.2741/s474.
7
Oxidant-induced Interprotein Disulfide Formation in Cardiac Protein DJ-1 Occurs via an Interaction with Peroxiredoxin 2.
J Biol Chem. 2016 May 6;291(19):10399-410. doi: 10.1074/jbc.M115.699850. Epub 2016 Mar 4.
8
Translation quality control is critical for bacterial responses to amino acid stress.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2252-7. doi: 10.1073/pnas.1525206113. Epub 2016 Feb 8.
10
Deficiencies in tRNA synthetase editing activity cause cardioproteinopathy.
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17570-5. doi: 10.1073/pnas.1420196111. Epub 2014 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验