Suppr超能文献

鉴定和验证一种有效的多信使 RNA 标志物,用于预测肝细胞癌的早期复发。

Identification and validation of a potent multi-mRNA signature for the prediction of early relapse in hepatocellular carcinoma.

机构信息

Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.

出版信息

Carcinogenesis. 2019 Jul 20;40(7):840-852. doi: 10.1093/carcin/bgz018.

Abstract

Early recurrence of hepatocellular carcinoma (HCC) is implicated in poor patient survival and is the major obstacle to improving prognosis. The current staging systems are insufficient for accurate prediction of early recurrence, suggesting that additional indicators for early recurrence are needed. Here, by analyzing the gene expression profiles of 12 Gene Expression Omnibus data sets (n = 1533), we identified 257 differentially expressed genes between HCC and non-tumor tissues. Least absolute shrinkage and selection operator regression model was used to identify a 24-messenger RNA (mRNA)-based signature in discovery cohort GSE14520. With specific risk score formula, patients were divided into high- and low-risk groups. Recurrence-free survival within 2 years (early-RFS) was significantly different between these two groups in discovery cohort [hazard ratio (HR): 7.954, 95% confidence interval (CI): 4.596-13.767, P < 0.001], internal validation cohort (HR: 8.693, 95% CI: 4.029-18.754, P < 0.001) and external validation cohort (HR: 5.982, 95% CI: 3.414-10.480, P < 0.001). Multivariable and subgroup analyses revealed that the 24-mRNA-based classifier was an independent prognostic factor for predicting early relapse of patients with HCC. We further developed a nomogram integrating the 24-mRNA-based signature and clinicopathological risk factors to predict the early-RFS. The 24-mRNA-signature-integrated nomogram showed good discrimination (concordance index: 0.883, 95% CI: 0.836-0.929) and calibration. Decision curve analysis demonstrated that the 24-mRNA-signature-integrated nomogram was clinically useful. In conclusion, our 24-mRNA signature is a powerful tool for early-relapse prediction and will facilitate individual management of HCC patients.

摘要

肝细胞癌 (HCC) 的早期复发与患者的不良预后相关,是改善预后的主要障碍。目前的分期系统不足以准确预测早期复发,这表明需要额外的早期复发指标。在这里,我们通过分析 12 个基因表达综合数据集(n=1533)的基因表达谱,鉴定了 HCC 与非肿瘤组织之间的 257 个差异表达基因。最小绝对收缩和选择算子回归模型用于在发现队列 GSE14520 中识别一个基于 24 个信使 RNA (mRNA) 的特征。根据特定的风险评分公式,患者被分为高风险和低风险组。在发现队列中,这两组患者在 2 年内无复发生存(早期-RFS)差异显著[风险比(HR):7.954,95%置信区间(CI):4.596-13.767,P < 0.001],内部验证队列(HR:8.693,95% CI:4.029-18.754,P < 0.001)和外部验证队列(HR:5.982,95% CI:3.414-10.480,P < 0.001)。多变量和亚组分析表明,24 个 mRNA 分类器是预测 HCC 患者早期复发的独立预后因素。我们进一步开发了一个列线图,该列线图集成了 24 个基于 mRNA 的分类器和临床病理危险因素,以预测早期-RFS。24-mRNA 特征整合列线图显示出良好的区分度(一致性指数:0.883,95%CI:0.836-0.929)和校准度。决策曲线分析表明,24-mRNA 特征整合列线图具有临床实用性。总之,我们的 24-mRNA 特征是预测早期复发的有力工具,将有助于 HCC 患者的个体化管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验