Suppr超能文献

FBS/BSA 培养基浓度决定 CCCP 使线粒体去极化和激活 PINK1-PRKN 线粒体自噬的能力。

FBS/BSA media concentration determines CCCP's ability to depolarize mitochondria and activate PINK1-PRKN mitophagy.

机构信息

Neurodegenerative Disease, UCL Institute of Neurology , London , UK.

MRC Laboratory for Molecular Cell Biology, UCL , London , UK.

出版信息

Autophagy. 2019 Nov;15(11):2002-2011. doi: 10.1080/15548627.2019.1603549. Epub 2019 May 7.

Abstract

Mitochondrial quality control is essential for maintaining a healthy population of mitochondria. Two proteins associated with Parkinson disease, the kinase PINK1 and the E3 ubiquitin ligase PRKN, play a central role in the selective degradation of heavily damaged mitochondria (mitophagy), thus avoiding their toxic accumulation. Most of the knowledge on PINK1-PRKN mitophagy comes from experiments involving the treatment of mammalian cells with high concentrations of mitochondrial uncouplers, such as CCCP. These chemicals have been shown to mediate off target effects, other than mitochondrial depolarization. A matter of controversy between mitochondrial physiologists and cell biologists is the discrepancy between concentrations of CCCP needed to activate mitophagy (usually >10 μM), when compared to the much lower concentrations used to depolarize mitochondria (<1 μM). Thus, there is an urgent need for optimizing the current methods to assess PINK1-PRKN mitophagy . In this study, we address the utilization of high CCCP concentrations commonly used to activate mitophagy. Combining live fluorescence microscopy and biochemistry, we show that the FBS/BSA in the cell culture medium reduces the ability of CCCP to induce PINK1 accumulation at depolarized mitochondria, subsequent PRKN recruitment and ubiquitin phosphorylation, and ultimately mitochondrial clearance. As a result, high concentrations of CCCP are required to induce mitophagy in FBS/BSA containing media. These data unite mitochondrial physiology and mitophagy studies and are a first step toward a consensus on optimal experimental conditions for PINK1-PRKN mitophagy and mitochondrial physiology investigations to be carried out in parallel. BSA: bovine serum albumin; CCCP: carbonyl cyanide m-chlorophenylhydrazone; DMEM: dulbecco's Modified Eagle's Medium; DNP: 2,4-dinitrophenol; FBS: fetal bovine serum; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; GSH: glutathione; HBSS: Hanks' balanced salt solution; mtKeima: mitochondria-targeted monomeric keima-red; PBS: phosphate buffered saline; PD: Parkinson disease; PINK1: PTEN induced kinase 1; POE SHSY5Ys: FLAG-PRKN over-expressing SHSY5Y cells; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; TMRM: tetramethylrhodamine methyl ester; WB: western blot; WT: wild-type; ΔΨm: mitochondrial membrane potential.

摘要

线粒体质量控制对于维持健康的线粒体群体至关重要。两种与帕金森病相关的蛋白质,激酶 PINK1 和 E3 泛素连接酶 PRKN,在选择性降解受损严重的线粒体(自噬)中发挥核心作用,从而避免其毒性积累。关于 PINK1-PRKN 自噬的大部分知识来自于哺乳动物细胞用高浓度的线粒体解偶联剂(如 CCCP)处理的实验。这些化学物质已被证明除了线粒体去极化之外,还具有其他的非靶向作用。线粒体生理学家和细胞生物学家之间存在争议的一个问题是,与用于去极化线粒体的低得多的浓度(<1 μM)相比,激活自噬所需的 CCCP 浓度(通常>10 μM)之间存在差异。因此,迫切需要优化当前评估 PINK1-PRKN 自噬的方法。在这项研究中,我们解决了通常用于激活自噬的高 CCCP 浓度的利用问题。通过结合活荧光显微镜和生物化学,我们表明细胞培养基中的 FBS/BSA 降低了 CCCP 在去极化的线粒体上诱导 PINK1 积累、随后 PRKN 募集和泛素磷酸化以及最终线粒体清除的能力。因此,在含有 FBS/BSA 的培养基中需要高浓度的 CCCP 来诱导自噬。这些数据将线粒体生理学和自噬研究结合在一起,是朝着在平行进行 PINK1-PRKN 自噬和线粒体生理学研究的最佳实验条件达成共识迈出的第一步。BSA:牛血清白蛋白;CCCP:羰基氰化物 m-氯苯腙;DMEM:杜尔贝科改良 Eagle 培养基;DNP:2,4-二硝基苯酚;FBS:胎牛血清;FCCP:羰基氰化物-4-(三氟甲氧基)苯腙;GSH:谷胱甘肽;HBSS:汉克斯平衡盐溶液;mtKeima:线粒体靶向单体 keima-红色;PBS:磷酸盐缓冲盐水;PD:帕金森病;PINK1:PTEN 诱导的激酶 1;POE SHSY5Ys:FLAG-PRKN 过表达 SHSY5Y 细胞;SDS-PAGE:十二烷基硫酸钠聚丙烯酰胺凝胶电泳;TMRM:四甲基罗丹明甲酯;WB:蛋白质印迹;WT:野生型;ΔΨm:线粒体膜电位。

相似文献

1
FBS/BSA media concentration determines CCCP's ability to depolarize mitochondria and activate PINK1-PRKN mitophagy.
Autophagy. 2019 Nov;15(11):2002-2011. doi: 10.1080/15548627.2019.1603549. Epub 2019 May 7.
2
mutations impair depolarization-induced mitophagy through inhibition of mitochondrial accumulation of RAB10.
Autophagy. 2020 Feb;16(2):203-222. doi: 10.1080/15548627.2019.1603548. Epub 2019 Apr 19.
3
Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy.
Autophagy. 2019 Dec;15(12):2107-2125. doi: 10.1080/15548627.2019.1596494. Epub 2019 Mar 28.
4
Spautin-1 promotes PINK1-PRKN-dependent mitophagy and improves associative learning capability in an alzheimer disease animal model.
Autophagy. 2024 Dec;20(12):2655-2676. doi: 10.1080/15548627.2024.2383145. Epub 2024 Aug 1.
5
PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis.
Autophagy. 2020 Mar;16(3):419-434. doi: 10.1080/15548627.2019.1628520. Epub 2019 Jun 16.
6
PINK1-PRKN mediated mitophagy: differences between and models.
Autophagy. 2023 May;19(5):1396-1405. doi: 10.1080/15548627.2022.2139080. Epub 2022 Nov 3.
7
Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys.
Autophagy. 2019 Dec;15(12):2142-2162. doi: 10.1080/15548627.2019.1615822. Epub 2019 May 22.
8
AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability.
Autophagy. 2022 Aug;18(8):1752-1762. doi: 10.1080/15548627.2021.1997052. Epub 2021 Nov 19.
10
PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis.
Autophagy. 2019 Mar;15(3):510-526. doi: 10.1080/15548627.2018.1532259. Epub 2018 Oct 13.

引用本文的文献

3
Ailanthone blocks mitophagy to promote mtDNA leakage through BAX-BAK1 pores and suppress hepatocellular carcinoma cell proliferation.
Front Pharmacol. 2024 Dec 11;15:1509482. doi: 10.3389/fphar.2024.1509482. eCollection 2024.
4
MCM8-mediated mitophagy protects vascular health in response to nitric oxide signaling in a mouse model of Kawasaki disease.
Nat Cardiovasc Res. 2023 Aug;2(8):778-792. doi: 10.1038/s44161-023-00314-x. Epub 2023 Aug 11.
7
Signal-Sustained Imaging of Mitophagy with an Enzyme-Activatable Metabolic Lipid Labeling Probe.
Autophagy. 2024 Nov;20(11):2556-2570. doi: 10.1080/15548627.2024.2367192. Epub 2024 Jun 19.
8
KAT8 compound inhibition inhibits the initial steps of PINK1-dependant mitophagy.
Sci Rep. 2024 May 22;14(1):11721. doi: 10.1038/s41598-024-60602-9.

本文引用的文献

3
Current mechanistic insights into the CCCP-induced cell survival response.
Biochem Pharmacol. 2018 Feb;148:100-110. doi: 10.1016/j.bcp.2017.12.018. Epub 2017 Dec 22.
4
Mitophagy in neurodegenerative diseases.
Neurochem Int. 2018 Jul;117:156-166. doi: 10.1016/j.neuint.2017.08.004. Epub 2017 Aug 8.
5
Programmed mitophagy is essential for the glycolytic switch during cell differentiation.
EMBO J. 2017 Jun 14;36(12):1688-1706. doi: 10.15252/embj.201695916. Epub 2017 May 2.
6
PINK1 and Parkin: emerging themes in mitochondrial homeostasis.
Curr Opin Cell Biol. 2017 Apr;45:83-91. doi: 10.1016/j.ceb.2017.03.013. Epub 2017 Apr 22.
7
Emerging role of mitophagy in human diseases and physiology.
BMB Rep. 2017 Jun;50(6):299-307. doi: 10.5483/bmbrep.2017.50.6.056.
8
Monitoring Mitophagy in Mammalian Cells.
Methods Enzymol. 2017;588:187-208. doi: 10.1016/bs.mie.2016.10.038. Epub 2016 Dec 9.
9
The pharmacological regulation of cellular mitophagy.
Nat Chem Biol. 2017 Jan 19;13(2):136-146. doi: 10.1038/nchembio.2287.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验