Suppr超能文献

ResPRE:通过结合精度矩阵和深度残差神经网络进行高精度蛋白质接触预测。

ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.

机构信息

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2218, USA.

出版信息

Bioinformatics. 2019 Nov 1;35(22):4647-4655. doi: 10.1093/bioinformatics/btz291.

Abstract

MOTIVATION

Contact-map of a protein sequence dictates the global topology of structural fold. Accurate prediction of the contact-map is thus essential to protein 3D structure prediction, which is particularly useful for the protein sequences that do not have close homology templates in the Protein Data Bank.

RESULTS

We developed a new method, ResPRE, to predict residue-level protein contacts using inverse covariance matrix (or precision matrix) of multiple sequence alignments (MSAs) through deep residual convolutional neural network training. The approach was tested on a set of 158 non-homologous proteins collected from the CASP experiments and achieved an average accuracy of 50.6% in the top-L long-range contact prediction with L being the sequence length, which is 11.7% higher than the best of other state-of-the-art approaches ranging from coevolution coupling analysis to deep neural network training. Detailed data analyses show that the major advantage of ResPRE lies at the utilization of precision matrix that helps rule out transitional noises of contact-maps compared with the previously used covariance matrix. Meanwhile, the residual network with parallel shortcut layer connections increases the learning ability of deep neural network training. It was also found that appropriate collection of MSAs can further improve the accuracy of final contact-map predictions. The standalone package and online server of ResPRE are made freely available, which should bring important impact on protein structure and function modeling studies in particular for the distant- and non-homology protein targets.

AVAILABILITY AND IMPLEMENTATION

https://zhanglab.ccmb.med.umich.edu/ResPRE and https://github.com/leeyang/ResPRE.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

蛋白质序列的接触图决定了结构折叠的全局拓扑。因此,准确预测接触图对于蛋白质 3D 结构预测至关重要,对于在蛋白质数据库中没有密切同源模板的蛋白质序列尤其有用。

结果

我们开发了一种新方法 ResPRE,通过深度残差卷积神经网络训练,使用多重序列比对(MSA)的逆协方差矩阵(或精度矩阵)来预测残基水平的蛋白质接触。该方法在来自 CASP 实验的 158 个非同源蛋白质集合上进行了测试,在最长 L 距离的接触预测中平均准确率为 50.6%,L 为序列长度,比从共进化耦合分析到深度神经网络训练的其他最先进方法中的最佳方法高 11.7%。详细数据分析表明,ResPRE 的主要优势在于利用精度矩阵有助于排除接触图的过渡噪声,而不是之前使用的协方差矩阵。同时,具有并行快捷层连接的残差网络增加了深度神经网络训练的学习能力。还发现,适当收集 MSA 可以进一步提高最终接触图预测的准确性。ResPRE 的独立软件包和在线服务器是免费提供的,这将对蛋白质结构和功能建模研究特别是对远距离和非同源蛋白质靶标产生重要影响。

可用性和实现

https://zhanglab.ccmb.med.umich.edu/ResPREhttps://github.com/leeyang/ResPRE。

补充信息

补充数据可在 Bioinformatics 在线获取。

相似文献

1
ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.
Bioinformatics. 2019 Nov 1;35(22):4647-4655. doi: 10.1093/bioinformatics/btz291.
3
NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers.
Bioinformatics. 2017 Aug 1;33(15):2296-2306. doi: 10.1093/bioinformatics/btx164.
4
Deep-learning contact-map guided protein structure prediction in CASP13.
Proteins. 2019 Dec;87(12):1149-1164. doi: 10.1002/prot.25792. Epub 2019 Aug 14.
5
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.
6
DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
Bioinformatics. 2018 May 1;34(9):1466-1472. doi: 10.1093/bioinformatics/btx781.
7
Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
PLoS Comput Biol. 2019 Oct 17;15(10):e1007411. doi: 10.1371/journal.pcbi.1007411. eCollection 2019 Oct.
8
9
DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
BMC Bioinformatics. 2020 Jan 9;21(1):10. doi: 10.1186/s12859-019-3190-x.
10
High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features.
Bioinformatics. 2018 Oct 1;34(19):3308-3315. doi: 10.1093/bioinformatics/bty341.

引用本文的文献

1
EquiRank: Improved protein-protein interface quality estimation using protein language-model-informed equivariant graph neural networks.
Comput Struct Biotechnol J. 2024 Dec 30;27:160-170. doi: 10.1016/j.csbj.2024.12.015. eCollection 2025.
5
The State-of-the-Art Overview to Application of Deep Learning in Accurate Protein Design and Structure Prediction.
Top Curr Chem (Cham). 2024 Jul 4;382(3):23. doi: 10.1007/s41061-024-00469-6.
8
Recent Progress of Protein Tertiary Structure Prediction.
Molecules. 2024 Feb 13;29(4):832. doi: 10.3390/molecules29040832.

本文引用的文献

1
High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features.
Bioinformatics. 2018 Oct 1;34(19):3308-3315. doi: 10.1093/bioinformatics/bty341.
2
Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks.
Cell Syst. 2018 Jan 24;6(1):65-74.e3. doi: 10.1016/j.cels.2017.11.014. Epub 2017 Dec 20.
3
DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
Bioinformatics. 2018 May 1;34(9):1466-1472. doi: 10.1093/bioinformatics/btx781.
4
Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl 1):136-151. doi: 10.1002/prot.25414. Epub 2017 Nov 14.
5
Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age.
Proteins. 2018 Mar;86 Suppl 1(Suppl Suppl 1):51-66. doi: 10.1002/prot.25407. Epub 2017 Nov 7.
6
Improved protein contact predictions with the MetaPSICOV2 server in CASP12.
Proteins. 2018 Mar;86 Suppl 1(Suppl Suppl 1):78-83. doi: 10.1002/prot.25379. Epub 2017 Sep 29.
7
NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers.
Bioinformatics. 2017 Aug 1;33(15):2296-2306. doi: 10.1093/bioinformatics/btx164.
8
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.
9
Evaluation of free modeling targets in CASP11 and ROLL.
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):51-66. doi: 10.1002/prot.24973. Epub 2016 Jan 20.
10
Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning.
Bioinformatics. 2015 Nov 1;31(21):3506-13. doi: 10.1093/bioinformatics/btv472. Epub 2015 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验