Suppr超能文献

瑞士靶点预测:小分子蛋白质靶标高效预测的更新数据和新特性。

SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules.

机构信息

Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, University of Lausanne, Quartier UNIL-Sorge, Bâtiment Amphipôle, CH-1015 Lausanne, Switzerland.

Department of Oncology, University Hospital of Lausanne, Ludwig Cancer Research - Lausanne Branch, CH-1011 Lausanne, Switzerland.

出版信息

Nucleic Acids Res. 2019 Jul 2;47(W1):W357-W364. doi: 10.1093/nar/gkz382.

Abstract

SwissTargetPrediction is a web tool, on-line since 2014, that aims to predict the most probable protein targets of small molecules. Predictions are based on the similarity principle, through reverse screening. Here, we describe the 2019 version, which represents a major update in terms of underlying data, backend and web interface. The bioactivity data were updated, the model retrained and similarity thresholds redefined. In the new version, the predictions are performed by searching for similar molecules, in 2D and 3D, within a larger collection of 376 342 compounds known to be experimentally active on an extended set of 3068 macromolecular targets. An efficient backend implementation allows to speed up the process that returns results for a druglike molecule on human proteins in 15-20 s. The refreshed web interface enhances user experience with new features for easy input and improved analysis. Interoperability capacity enables straightforward submission of any input or output molecule to other on-line computer-aided drug design tools, developed by the SIB Swiss Institute of Bioinformatics. High levels of predictive performance were maintained despite more extended biological and chemical spaces to be explored, e.g. achieving at least one correct human target in the top 15 predictions for >70% of external compounds. The new SwissTargetPrediction is available free of charge (www.swisstargetprediction.ch).

摘要

瑞士靶向预测是一个在线网络工具,自 2014 年以来一直运行,旨在预测小分子最可能的蛋白质靶标。预测是基于相似性原则,通过反向筛选。在这里,我们描述了 2019 年的版本,该版本在底层数据、后端和网络界面方面都进行了重大更新。生物活性数据进行了更新,模型重新训练,相似性阈值重新定义。在新版本中,通过在一个更大的 376342 种化合物集合中搜索 2D 和 3D 相似分子,对已知在 3068 种大分子靶标上具有广泛活性的化合物进行预测。高效的后端实现允许加快返回 15-20 秒内人蛋白上类似药物分子结果的过程。更新后的网络界面通过易于输入和改进分析的新功能增强了用户体验。互操作性能力允许将任何输入或输出分子直接提交给由瑞士生物信息学研究所开发的其他在线计算机辅助药物设计工具。尽管需要探索更广泛的生物学和化学空间,但仍保持了较高的预测性能水平,例如,对于超过 70%的外部化合物,在前 15 个预测中至少有一个正确的人类靶标。新的瑞士靶向预测是免费的(www.swisstargetprediction.ch)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d74/6602486/92ba21ea1200/gkz382fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验