J Chem Inf Model. 2019 Jun 24;59(6):3041-3056. doi: 10.1021/acs.jcim.9b00363. Epub 2019 Jun 13.
Membrane-bound protein receptors are a primary biological drug target, but the computational analysis of membrane proteins has been limited. In order to improve molecular mechanics Poisson-Boltzmann surface area (MMPBSA) binding free energy calculations for membrane protein-ligand systems, we have optimized a new heterogeneous dielectric implicit membrane model, with respect to free energy simulations in explicit membrane and explicit water, and implemented it into the Amber software suite. This new model supersedes our previous uniform, single dielectric implicit membrane model by allowing the dielectric constant to vary with depth within the membrane. We calculated MMPBSA binding free energies for the human purinergic platelet receptor (P2YR) and two of the muscarinic acetylcholine receptors (M2R and M3R) bound to various antagonist ligands using both membrane models, and we found that the heterogeneous dielectric membrane model has a stronger correlation with experimental binding affinities compared to the older model under otherwise identical conditions. This improved membrane model increases the utility of MMPBSA calculations for the rational design and improvement of future drug candidates.
膜结合蛋白受体是主要的生物药物靶点,但膜蛋白的计算分析一直受到限制。为了提高膜蛋白-配体体系的分子力学泊松-玻尔兹曼表面积(MMPBSA)结合自由能计算,我们针对在明确的膜和明确的水中的自由能模拟,优化了一种新的非均相介电隐式膜模型,并将其实现到 Amber 软件套件中。这种新模型通过允许介电常数在膜内随深度变化,取代了我们以前的均匀、单一介电隐式膜模型。我们使用这两种膜模型计算了与人嘌呤能血小板受体(P2YR)和两种毒蕈碱乙酰胆碱受体(M2R 和 M3R)与各种拮抗剂配体结合的 MMPBSA 结合自由能,并且我们发现,在其他条件相同的情况下,与旧模型相比,非均相介电膜模型与实验结合亲和力的相关性更强。这种改进的膜模型增加了 MMPBSA 计算在合理设计和改进未来候选药物方面的实用性。