Suppr超能文献

用于 MMPBSA 结合自由能计算的各向异性介电隐式膜模型。

Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding Free Energies.

出版信息

J Chem Inf Model. 2019 Jun 24;59(6):3041-3056. doi: 10.1021/acs.jcim.9b00363. Epub 2019 Jun 13.

Abstract

Membrane-bound protein receptors are a primary biological drug target, but the computational analysis of membrane proteins has been limited. In order to improve molecular mechanics Poisson-Boltzmann surface area (MMPBSA) binding free energy calculations for membrane protein-ligand systems, we have optimized a new heterogeneous dielectric implicit membrane model, with respect to free energy simulations in explicit membrane and explicit water, and implemented it into the Amber software suite. This new model supersedes our previous uniform, single dielectric implicit membrane model by allowing the dielectric constant to vary with depth within the membrane. We calculated MMPBSA binding free energies for the human purinergic platelet receptor (P2YR) and two of the muscarinic acetylcholine receptors (M2R and M3R) bound to various antagonist ligands using both membrane models, and we found that the heterogeneous dielectric membrane model has a stronger correlation with experimental binding affinities compared to the older model under otherwise identical conditions. This improved membrane model increases the utility of MMPBSA calculations for the rational design and improvement of future drug candidates.

摘要

膜结合蛋白受体是主要的生物药物靶点,但膜蛋白的计算分析一直受到限制。为了提高膜蛋白-配体体系的分子力学泊松-玻尔兹曼表面积(MMPBSA)结合自由能计算,我们针对在明确的膜和明确的水中的自由能模拟,优化了一种新的非均相介电隐式膜模型,并将其实现到 Amber 软件套件中。这种新模型通过允许介电常数在膜内随深度变化,取代了我们以前的均匀、单一介电隐式膜模型。我们使用这两种膜模型计算了与人嘌呤能血小板受体(P2YR)和两种毒蕈碱乙酰胆碱受体(M2R 和 M3R)与各种拮抗剂配体结合的 MMPBSA 结合自由能,并且我们发现,在其他条件相同的情况下,与旧模型相比,非均相介电膜模型与实验结合亲和力的相关性更强。这种改进的膜模型增加了 MMPBSA 计算在合理设计和改进未来候选药物方面的实用性。

相似文献

1
Heterogeneous Dielectric Implicit Membrane Model for the Calculation of MMPBSA Binding Free Energies.
J Chem Inf Model. 2019 Jun 24;59(6):3041-3056. doi: 10.1021/acs.jcim.9b00363. Epub 2019 Jun 13.
2
Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis.
J Comput Chem. 2016 Oct 15;37(27):2436-46. doi: 10.1002/jcc.24467. Epub 2016 Aug 11.
4
SAMPL6 host-guest challenge: binding free energies via a multistep approach.
J Comput Aided Mol Des. 2018 Oct;32(10):1097-1115. doi: 10.1007/s10822-018-0159-1. Epub 2018 Sep 17.
5
Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
J Mol Graph Model. 2017 Mar;72:70-80. doi: 10.1016/j.jmgm.2016.12.011. Epub 2016 Dec 21.
6
Modeling Membrane Protein-Ligand Binding Interactions: The Human Purinergic Platelet Receptor.
J Phys Chem B. 2016 Dec 8;120(48):12293-12304. doi: 10.1021/acs.jpcb.6b09535. Epub 2016 Nov 23.
7
g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.
J Chem Inf Model. 2014 Jul 28;54(7):1951-62. doi: 10.1021/ci500020m. Epub 2014 Jun 19.
8
SAMPL7: Host-guest binding prediction by molecular dynamics and quantum mechanics.
J Comput Aided Mol Des. 2021 Jan;35(1):63-77. doi: 10.1007/s10822-020-00357-3. Epub 2020 Nov 5.

引用本文的文献

1
Mechanistic insights from simulations of drug-drug conjugate nanoclusters for co-delivery across cancer cell membranes.
RSC Adv. 2025 Apr 10;15(15):11343-11353. doi: 10.1039/d5ra00480b. eCollection 2025 Apr 9.
2
Molecular Mechanisms Underlying Medium-Chain Free Fatty Acid-Regulated Activity of the Phospholipase PlaF from .
JACS Au. 2024 Feb 27;4(3):958-973. doi: 10.1021/jacsau.3c00725. eCollection 2024 Mar 25.
3
Study of SQ109 analogs binding to mycobacterium MmpL3 transporter using MD simulations and alchemical relative binding free energy calculations.
J Comput Aided Mol Des. 2023 Jun;37(5-6):245-264. doi: 10.1007/s10822-023-00504-6. Epub 2023 May 2.
4
Million-atom molecular dynamics simulations reveal the interfacial interactions and assembly of plant PSII-LHCII supercomplex.
RSC Adv. 2023 Feb 27;13(10):6699-6712. doi: 10.1039/d2ra08240c. eCollection 2023 Feb 21.
5
Role of Monovalent Ions in the NKCC1 Inhibition Mechanism Revealed through Molecular Simulations.
Int J Mol Sci. 2022 Dec 6;23(23):15439. doi: 10.3390/ijms232315439.
10
Molecular basis for redox control by the human cystine/glutamate antiporter system xc.
Nat Commun. 2021 Dec 8;12(1):7147. doi: 10.1038/s41467-021-27414-1.

本文引用的文献

1
An efficient second-order poisson-boltzmann method.
J Comput Chem. 2019 May 5;40(12):1257-1269. doi: 10.1002/jcc.25783. Epub 2019 Feb 18.
2
Robustness and Efficiency of Poisson-Boltzmann Modeling on Graphics Processing Units.
J Chem Inf Model. 2019 Jan 28;59(1):409-420. doi: 10.1021/acs.jcim.8b00761. Epub 2018 Dec 31.
3
Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists.
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):12046-12050. doi: 10.1073/pnas.1813988115. Epub 2018 Nov 7.
4
Accurate Calculation of Relative Binding Free Energies between Ligands with Different Net Charges.
J Chem Theory Comput. 2018 Dec 11;14(12):6346-6358. doi: 10.1021/acs.jctc.8b00825. Epub 2018 Nov 12.
5
Recent Developments and Applications of the MMPBSA Method.
Front Mol Biosci. 2018 Jan 10;4:87. doi: 10.3389/fmolb.2017.00087. eCollection 2017.
6
Ionic Solution: What Goes Right and Wrong with Continuum Solvation Modeling.
J Phys Chem B. 2017 Dec 14;121(49):11169-11179. doi: 10.1021/acs.jpcb.7b09616. Epub 2017 Dec 1.
7
A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins.
J Chem Theory Comput. 2017 Jul 11;13(7):3398-3412. doi: 10.1021/acs.jctc.7b00382. Epub 2017 Jun 14.
8
Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.
J Chem Theory Comput. 2017 Jul 11;13(7):3378-3387. doi: 10.1021/acs.jctc.7b00336. Epub 2017 Jun 7.
9
Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface.
J Chem Theory Comput. 2017 May 9;13(5):2310-2321. doi: 10.1021/acs.jctc.7b00001. Epub 2017 Apr 20.
10
Numerical interpretation of molecular surface field in dielectric modeling of solvation.
J Comput Chem. 2017 May 30;38(14):1057-1070. doi: 10.1002/jcc.24782. Epub 2017 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验