Suppr超能文献

基因编码光解醌甲醚,在体内共价标记多个靶标蛋白残基。

Genetically Encoding Photocaged Quinone Methide to Multitarget Protein Residues Covalently in Vivo.

机构信息

Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.

Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States.

出版信息

J Am Chem Soc. 2019 Jun 19;141(24):9458-9462. doi: 10.1021/jacs.9b01738. Epub 2019 Jun 4.

Abstract

Genetically introducing covalent bonds into proteins in vivo with residue specificity is affording innovative ways for protein research and engineering, yet latent bioreactive unnatural amino acids (Uaas) genetically encoded to date react with one to few natural residues only, limiting the variety of proteins and the scope of applications amenable to this technology. Here we report the genetic encoding of (2 R)-2-amino-3-fluoro-3-(4-((2-nitrobenzyl)oxy) phenyl) propanoic acid (FnbY) in Escherichia coli and mammalian cells. Upon photoactivation, FnbY generated a reactive quinone methide (QM), which selectively reacted with nine natural amino acid residues placed in proximity in proteins directly in live cells. In addition to Cys, Lys, His, and Tyr, photoactivated FnbY also reacted with Trp, Met, Arg, Asn, and Gln, which are inaccessible with existing latent bioreactive Uaas. FnbY thus dramatically expanded the number of residues for covalent targeting in vivo. QM has longer half-life than the intermediates of conventional photo-cross-linking Uaas, and FnbY exhibited cross-linking efficiency higher than p-azido-phenylalanine. The photoactivatable and multitargeting reactivity of FnbY with selectivity toward nucleophilic residues will be valuable for addressing diverse proteins and broadening the scope of applications through exploiting covalent bonding in vivo for chemical biology, biotherapeutics, and protein engineering.

摘要

在体内将共价键基因引入蛋白质中具有残基特异性,为蛋白质研究和工程提供了创新的方法,然而,迄今为止,基因编码的潜在生物反应性非天然氨基酸(Uaas)仅与一个或少数几个天然残基反应,限制了可应用此技术的蛋白质种类和应用范围。在这里,我们报告了(2R)-2-氨基-3-氟-3-(4-((2-硝基苄基)氧基)苯基)丙酸(FnbY)在大肠杆菌和哺乳动物细胞中的基因编码。光激活后,FnbY 生成了一种反应性的醌甲基(QM),它可以直接在活细胞中与蛋白质中靠近的九个天然氨基酸残基选择性反应。除了 Cys、Lys、His 和 Tyr 之外,光激活的 FnbY 还与 Trp、Met、Arg、Asn 和 Gln 反应,这些残基是现有潜在生物反应性 Uaas 无法到达的。因此,FnbY 极大地扩展了体内共价靶向的残基数量。QM 的半衰期比传统光交联 Uaas 的中间体长,并且 FnbY 的交联效率高于 p-叠氮苯丙氨酸。FnbY 的光活化和多靶向反应性以及对亲核残基的选择性将有助于解决各种蛋白质问题,并通过在体内利用共价键来拓宽化学生物学、生物疗法和蛋白质工程的应用范围。

相似文献

1
Genetically Encoding Photocaged Quinone Methide to Multitarget Protein Residues Covalently in Vivo.
J Am Chem Soc. 2019 Jun 19;141(24):9458-9462. doi: 10.1021/jacs.9b01738. Epub 2019 Jun 4.
2
A Genetically Encoded Fluorosulfonyloxybenzoyl-l-lysine for Expansive Covalent Bonding of Proteins via SuFEx Chemistry.
J Am Chem Soc. 2021 Jul 14;143(27):10341-10351. doi: 10.1021/jacs.1c04259. Epub 2021 Jul 2.
3
Photocaged Quinone Methide Crosslinkers for Light-Controlled Chemical Crosslinking of Protein-Protein and Protein-DNA Complexes.
Angew Chem Int Ed Engl. 2019 Dec 19;58(52):18839-18843. doi: 10.1002/anie.201910135. Epub 2019 Nov 8.
4
Genetically Encoding Fluorosulfate-l-tyrosine To React with Lysine, Histidine, and Tyrosine via SuFEx in Proteins in Vivo.
J Am Chem Soc. 2018 Apr 18;140(15):4995-4999. doi: 10.1021/jacs.8b01087. Epub 2018 Apr 5.
5
Genetically encoding new bioreactivity.
N Biotechnol. 2017 Sep 25;38(Pt A):16-25. doi: 10.1016/j.nbt.2016.10.003. Epub 2016 Oct 6.
6
Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry.
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11162-11167. doi: 10.1073/pnas.1813574115. Epub 2018 Oct 15.
7
Protein Crosslinking by Genetically Encoded Noncanonical Amino Acids with Reactive Aryl Carbamate Side Chains.
Angew Chem Int Ed Engl. 2017 Apr 24;56(18):5096-5100. doi: 10.1002/anie.201611841. Epub 2017 Apr 3.
8
New covalent bonding ability for proteins.
Protein Sci. 2022 Feb;31(2):312-322. doi: 10.1002/pro.4228. Epub 2021 Nov 16.
9
Residue selective crosslinking of proteins through photoactivatable or proximity-enabled reactivity.
Curr Opin Chem Biol. 2023 Jun;74:102285. doi: 10.1016/j.cbpa.2023.102285. Epub 2023 Mar 11.
10
Genetically encoding latent bioreactive amino acids and the development of covalent protein drugs.
Curr Opin Chem Biol. 2022 Feb;66:102106. doi: 10.1016/j.cbpa.2021.102106. Epub 2021 Dec 27.

引用本文的文献

1
A hydrophobic photouncaging reaction to profile the lipid droplet interactome in tissues.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2420861122. doi: 10.1073/pnas.2420861122. Epub 2025 Apr 16.
2
Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome.
Chem Rev. 2025 Apr 23;125(8):4069-4110. doi: 10.1021/acs.chemrev.4c00554. Epub 2025 Apr 3.
3
Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion.
Chem Rev. 2025 Feb 26;125(4):1663-1717. doi: 10.1021/acs.chemrev.4c00224. Epub 2025 Feb 10.
4
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.
5
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
6
Genetically Enabling Phosphorus Fluoride Exchange Click Chemistry in Proteins.
Chem. 2024 Jun 13;10(6):1868-1884. doi: 10.1016/j.chempr.2024.02.010. Epub 2024 Mar 5.
7
Biospecific Chemistry for Covalent Linking of Biomacromolecules.
Chem Rev. 2024 Jul 10;124(13):8516-8549. doi: 10.1021/acs.chemrev.4c00066. Epub 2024 Jun 24.
8
Genetically Encoded Epoxide Warhead for Precise and Versatile Covalent Targeting of Proteins.
J Am Chem Soc. 2024 Jun 12;146(23):16173-16183. doi: 10.1021/jacs.4c03974. Epub 2024 May 31.
9
All-photonic kinase inhibitors: light-controlled release-and-report inhibition.
Chem Sci. 2024 Apr 12;15(18):6897-6905. doi: 10.1039/d4sc00390j. eCollection 2024 May 8.
10
Current advances in photocatalytic proximity labeling.
Cell Chem Biol. 2024 Jun 20;31(6):1145-1161. doi: 10.1016/j.chembiol.2024.03.012. Epub 2024 Apr 24.

本文引用的文献

2
Genetically Encoding Quinoline Reverses Chromophore Charge and Enables Fluorescent Protein Brightening in Acidic Vesicles.
J Am Chem Soc. 2018 Sep 5;140(35):11058-11066. doi: 10.1021/jacs.8b05814. Epub 2018 Aug 22.
3
Genetically Encoding Fluorosulfate-l-tyrosine To React with Lysine, Histidine, and Tyrosine via SuFEx in Proteins in Vivo.
J Am Chem Soc. 2018 Apr 18;140(15):4995-4999. doi: 10.1021/jacs.8b01087. Epub 2018 Apr 5.
6
Genetically Encoded 2-Aryl-5-carboxytetrazoles for Site-Selective Protein Photo-Cross-Linking.
J Am Chem Soc. 2017 May 3;139(17):6078-6081. doi: 10.1021/jacs.7b02615. Epub 2017 Apr 21.
7
Protein Crosslinking by Genetically Encoded Noncanonical Amino Acids with Reactive Aryl Carbamate Side Chains.
Angew Chem Int Ed Engl. 2017 Apr 24;56(18):5096-5100. doi: 10.1002/anie.201611841. Epub 2017 Apr 3.
8
Using Protein-Confined Proximity To Determine Chemical Reactivity.
J Am Chem Soc. 2016 Nov 16;138(45):14832-14835. doi: 10.1021/jacs.6b08656. Epub 2016 Nov 4.
9
Genetically encoding new bioreactivity.
N Biotechnol. 2017 Sep 25;38(Pt A):16-25. doi: 10.1016/j.nbt.2016.10.003. Epub 2016 Oct 6.
10
Genetic Incorporation of a Reactive Isothiocyanate Group into Proteins.
Angew Chem Int Ed Engl. 2016 Aug 16;55(34):10065-8. doi: 10.1002/anie.201604891. Epub 2016 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验