Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.
Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States.
J Am Chem Soc. 2019 Jun 19;141(24):9458-9462. doi: 10.1021/jacs.9b01738. Epub 2019 Jun 4.
Genetically introducing covalent bonds into proteins in vivo with residue specificity is affording innovative ways for protein research and engineering, yet latent bioreactive unnatural amino acids (Uaas) genetically encoded to date react with one to few natural residues only, limiting the variety of proteins and the scope of applications amenable to this technology. Here we report the genetic encoding of (2 R)-2-amino-3-fluoro-3-(4-((2-nitrobenzyl)oxy) phenyl) propanoic acid (FnbY) in Escherichia coli and mammalian cells. Upon photoactivation, FnbY generated a reactive quinone methide (QM), which selectively reacted with nine natural amino acid residues placed in proximity in proteins directly in live cells. In addition to Cys, Lys, His, and Tyr, photoactivated FnbY also reacted with Trp, Met, Arg, Asn, and Gln, which are inaccessible with existing latent bioreactive Uaas. FnbY thus dramatically expanded the number of residues for covalent targeting in vivo. QM has longer half-life than the intermediates of conventional photo-cross-linking Uaas, and FnbY exhibited cross-linking efficiency higher than p-azido-phenylalanine. The photoactivatable and multitargeting reactivity of FnbY with selectivity toward nucleophilic residues will be valuable for addressing diverse proteins and broadening the scope of applications through exploiting covalent bonding in vivo for chemical biology, biotherapeutics, and protein engineering.
在体内将共价键基因引入蛋白质中具有残基特异性,为蛋白质研究和工程提供了创新的方法,然而,迄今为止,基因编码的潜在生物反应性非天然氨基酸(Uaas)仅与一个或少数几个天然残基反应,限制了可应用此技术的蛋白质种类和应用范围。在这里,我们报告了(2R)-2-氨基-3-氟-3-(4-((2-硝基苄基)氧基)苯基)丙酸(FnbY)在大肠杆菌和哺乳动物细胞中的基因编码。光激活后,FnbY 生成了一种反应性的醌甲基(QM),它可以直接在活细胞中与蛋白质中靠近的九个天然氨基酸残基选择性反应。除了 Cys、Lys、His 和 Tyr 之外,光激活的 FnbY 还与 Trp、Met、Arg、Asn 和 Gln 反应,这些残基是现有潜在生物反应性 Uaas 无法到达的。因此,FnbY 极大地扩展了体内共价靶向的残基数量。QM 的半衰期比传统光交联 Uaas 的中间体长,并且 FnbY 的交联效率高于 p-叠氮苯丙氨酸。FnbY 的光活化和多靶向反应性以及对亲核残基的选择性将有助于解决各种蛋白质问题,并通过在体内利用共价键来拓宽化学生物学、生物疗法和蛋白质工程的应用范围。