Suppr超能文献

世界卫生组织关于冲突环境中心理障碍患病率的最新估计:系统评价和荟萃分析。

New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis.

机构信息

Policy and Epidemiology Group, Queensland Centre for Mental Health Research, QLD, Australia; School of Public Health, University of Queensland, QLD, Australia; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.

Department of Mental Health and Substance Abuse, WHO, Geneva, Switzerland.

出版信息

Lancet. 2019 Jul 20;394(10194):240-248. doi: 10.1016/S0140-6736(19)30934-1. Epub 2019 Jun 12.

Abstract

BACKGROUND

Existing WHO estimates of the prevalence of mental disorders in emergency settings are more than a decade old and do not reflect modern methods to gather existing data and derive estimates. We sought to update WHO estimates for the prevalence of mental disorders in conflict-affected settings and calculate the burden per 1000 population.

METHODS

In this systematic review and meta-analysis, we updated a previous systematic review by searching MEDLINE (PubMed), PsycINFO, and Embase for studies published between Jan 1, 2000, and Aug 9, 2017, on the prevalence of depression, anxiety disorder, post-traumatic stress disorder, bipolar disorder, and schizophrenia. We also searched the grey literature, such as government reports, conference proceedings, and dissertations, to source additional data, and we searched datasets from existing literature reviews of the global prevalence of depression and anxiety and reference lists from the studies that were identified. We applied the Guidelines for Accurate and Transparent Health Estimates Reporting and used Bayesian meta-regression techniques that adjust for predictors of mental disorders to calculate new point prevalence estimates with 95% uncertainty intervals (UIs) in settings that had experienced conflict less than 10 years previously.

FINDINGS

We estimated that the prevalence of mental disorders (depression, anxiety, post-traumatic stress disorder, bipolar disorder, and schizophrenia) was 22·1% (95% UI 18·8-25·7) at any point in time in the conflict-affected populations assessed. The mean comorbidity-adjusted, age-standardised point prevalence was 13·0% (95% UI 10·3-16·2) for mild forms of depression, anxiety, and post-traumatic stress disorder and 4·0% (95% UI 2·9-5·5) for moderate forms. The mean comorbidity-adjusted, age-standardised point prevalence for severe disorders (schizophrenia, bipolar disorder, severe depression, severe anxiety, and severe post-traumatic stress disorder) was 5·1% (95% UI 4·0-6·5). As only two studies provided epidemiological data for psychosis in conflict-affected populations, existing Global Burden of Disease Study estimates for schizophrenia and bipolar disorder were applied in these estimates for conflict-affected populations.

INTERPRETATION

The burden of mental disorders is high in conflict-affected populations. Given the large numbers of people in need and the humanitarian imperative to reduce suffering, there is an urgent need to implement scalable mental health interventions to address this burden.

FUNDING

WHO; Queensland Department of Health, Australia; and Bill & Melinda Gates Foundation.

摘要

背景

现有的世界卫生组织(WHO)对紧急情况下精神障碍患病率的估计已有十余年的历史,且无法反映出目前收集现有数据并推估患病率的方法。因此,我们试图更新与冲突相关环境下精神障碍患病率的 WHO 估计值,并计算每千人的负担。

方法

在本次系统性回顾和荟萃分析中,我们对之前的系统性回顾进行了更新,在 2000 年 1 月 1 日至 2017 年 8 月 9 日期间,通过搜索 MEDLINE(PubMed)、PsycINFO 和 Embase,查找关于抑郁症、焦虑障碍、创伤后应激障碍、双相情感障碍和精神分裂症患病率的研究。我们还检索了灰色文献,例如政府报告、会议记录和学位论文,以获取额外的数据,并从现有的全球抑郁症和焦虑症患病率文献综述和所确定研究的参考文献列表中检索了数据集。我们采用了准确和透明健康估计报告指南,并使用贝叶斯荟萃回归技术,根据精神障碍的预测因素进行调整,以计算出在冲突影响时间不足 10 年的人群中,新的时点患病率估计值和 95%不确定区间(UI)。

结果

我们估计,在评估的受冲突影响人群中,任何时候的精神障碍(抑郁症、焦虑症、创伤后应激障碍、双相情感障碍和精神分裂症)患病率为 22.1%(95% UI 18.8-25.7)。轻度抑郁、焦虑和创伤后应激障碍共病调整后的平均时点患病率为 13.0%(95% UI 10.3-16.2),中度形式为 4.0%(95% UI 2.9-5.5)。严重疾病(精神分裂症、双相情感障碍、严重抑郁症、严重焦虑症和严重创伤后应激障碍)的共病调整后的平均时点患病率为 5.1%(95% UI 4.0-6.5)。由于只有两项研究提供了受冲突影响人群中精神病的流行病学数据,因此在这些受冲突影响人群的估计中应用了现有全球疾病负担研究对精神分裂症和双相情感障碍的估计值。

解释

受冲突影响人群的精神障碍负担很高。鉴于需要帮助的人数众多,且人道主义需要减轻痛苦,因此迫切需要实施可扩展的心理健康干预措施来应对这一负担。

资金

世界卫生组织;澳大利亚昆士兰州卫生部;以及比尔及梅琳达·盖茨基金会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d71/6657025/1c8aeb98f1a8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验