Suppr超能文献

自动化磁 3D 球体模型技术以实现高通量筛选。

Automating a Magnetic 3D Spheroid Model Technology for High-Throughput Screening.

机构信息

1 The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Florida, Jupiter, FL, USA.

2 Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China.

出版信息

SLAS Technol. 2019 Aug;24(4):420-428. doi: 10.1177/2472630319854337. Epub 2019 Jun 21.

Abstract

Affordable and physiologically relevant three-dimensional (3D) cell-based assays used in high-throughput screening (HTS) are on the rise in early drug discovery. These technologies have been aided by the recent adaptation of novel microplate treatments and spheroid culturing techniques. One such technology involves the use of nanoparticle (NanoShuttle-PL) labeled cells and custom magnetic drives to assist in cell aggregation to ensure rapid 3D structure formation after the cells have been dispensed into microtiter plates. Transitioning this technology from a low-throughput manual benchtop application, as previously published by our lab, into a robotically enabled format achieves orders of magnitude greater throughput but required the development of specialized support hardware. This effort included in-house development, fabrication, and testing of ancillary devices that assist robotic handing and high-precision placement of microtiter plates into an incubator embedded with magnetic drives. Utilizing a "rapid prototyping" approach facilitated by cloud-based computer-aided design software, we built the necessary components using hobby-grade 3D printers with turnaround times that rival those of traditional manufacturing/development practices at a substantially reduced cost. This approach culminated in a first-in-class HTS-compatible 3D system in which we have coupled 3D bioprinting to a fully automated HTS robotic platform utilizing our novel magnetic incubator shelf assemblies.

摘要

在药物早期发现中,可负担且与生理相关的高通量筛选(HTS)三维(3D)细胞检测法正在兴起。这些技术得益于新型微孔板处理和球体培养技术的最新应用。其中一种技术涉及使用纳米颗粒(NanoShuttle-PL)标记细胞和定制的磁性驱动器来辅助细胞聚集,以确保细胞被分配到微量滴定板后快速形成 3D 结构。将这项技术从我们实验室之前发表的低通量手动台式应用转变为机器人驱动的格式,可以实现数量级的更高通量,但需要开发专门的支持硬件。这方面的工作包括内部开发、制造和测试辅助机器人处理和高精度将微量滴定板放置到嵌入磁性驱动器的培养箱中的辅助设备。我们利用基于云的计算机辅助设计软件提供的“快速原型制作”方法,使用业余级 3D 打印机构建必要的组件,其周转时间可与传统制造/开发实践相媲美,成本却大大降低。这种方法最终形成了一个一流的高通量筛选兼容 3D 系统,我们将 3D 生物打印与全自动高通量筛选机器人平台相结合,利用我们新型的磁性孵育架组件。

相似文献

1
Automating a Magnetic 3D Spheroid Model Technology for High-Throughput Screening.
SLAS Technol. 2019 Aug;24(4):420-428. doi: 10.1177/2472630319854337. Epub 2019 Jun 21.
2
An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation.
Int J Mol Sci. 2023 Jan 5;24(2):1006. doi: 10.3390/ijms24021006.
3
High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.
Analyst. 2011 Feb 7;136(3):473-8. doi: 10.1039/c0an00609b. Epub 2010 Oct 21.
4
Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening.
Mol Pharm. 2014 Jul 7;11(7):2182-9. doi: 10.1021/mp5000604. Epub 2014 May 29.
5
Biomek Cell Workstation: A Flexible System for Automated 3D Cell Cultivation.
J Lab Autom. 2016 Aug;21(4):568-78. doi: 10.1177/2211068215594580. Epub 2015 Jul 22.
6
Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening.
J Mol Cell Biol. 2020 Aug 1;12(8):630-643. doi: 10.1093/jmcb/mjaa036.
7
Robotic printing and drug testing of 384-well tumor spheroids.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2183-6. doi: 10.1109/EMBC.2015.7318823.
9
Reproducibility of Uniform Spheroid Formation in 384-Well Plates: The Effect of Medium Evaporation.
J Biomol Screen. 2016 Oct;21(9):923-30. doi: 10.1177/1087057116651867. Epub 2016 May 25.
10
Naked Liquid Marbles: A Robust Three-Dimensional Low-Volume Cell-Culturing System.
ACS Appl Mater Interfaces. 2019 Mar 13;11(10):9814-9823. doi: 10.1021/acsami.8b22036. Epub 2019 Feb 26.

引用本文的文献

1
A 3D tumor spheroid model with robust T cell infiltration for evaluating immune cell engagers.
iScience. 2025 Jun 25;28(8):112996. doi: 10.1016/j.isci.2025.112996. eCollection 2025 Aug 15.
2
Control of cardiac waves in human iPSC-CM syncytia by a Halbach array and magnetic nanoparticles.
Biophys J. 2025 Apr 15;124(8):1273-1284. doi: 10.1016/j.bpj.2025.03.006. Epub 2025 Mar 12.
3
Advanced tumor organoid bioprinting strategy for oncology research.
Mater Today Bio. 2024 Aug 8;28:101198. doi: 10.1016/j.mtbio.2024.101198. eCollection 2024 Oct.
4
Inspiring a convergent engineering approach to measure and model the tissue microenvironment.
Heliyon. 2024 Jun 8;10(12):e32546. doi: 10.1016/j.heliyon.2024.e32546. eCollection 2024 Jun 30.
6
Protocol for high throughput 3D drug screening of patient derived melanoma and renal cell carcinoma.
SLAS Discov. 2024 Apr;29(3):100141. doi: 10.1016/j.slasd.2024.01.002. Epub 2024 Jan 11.
7
Mapping Cell-in-Cell Structures in Oral Squamous Cell Carcinoma.
Cells. 2023 Oct 8;12(19):2418. doi: 10.3390/cells12192418.
8
Application of three-dimensional (3D) bioprinting in anti-cancer therapy.
Heliyon. 2023 Sep 28;9(10):e20475. doi: 10.1016/j.heliyon.2023.e20475. eCollection 2023 Oct.
9
Magnetic force-based cell manipulation for tissue engineering.
APL Bioeng. 2023 Sep 19;7(3):031504. doi: 10.1063/5.0138732. eCollection 2023 Sep.
10
In Vitro and In Vivo Drug-Response Profiling Using Patient-Derived High-Grade Glioma.
Cancers (Basel). 2023 Jun 22;15(13):3289. doi: 10.3390/cancers15133289.

本文引用的文献

1
A Cytotoxic Three-Dimensional-Spheroid, High-Throughput Assay Using Patient-Derived Glioma Stem Cells.
SLAS Discov. 2018 Sep;23(8):842-849. doi: 10.1177/2472555218775055. Epub 2018 May 11.
2
A novel three-dimensional high-throughput screening approach identifies inducers of a mutant KRAS selective lethal phenotype.
Oncogene. 2018 Aug;37(32):4372-4384. doi: 10.1038/s41388-018-0257-5. Epub 2018 May 10.
3
Advanced Development of Primary Pancreatic Organoid Tumor Models for High-Throughput Phenotypic Drug Screening.
SLAS Discov. 2018 Jul;23(6):574-584. doi: 10.1177/2472555218766842. Epub 2018 Apr 19.
4
Using bead injection to model dispensing of 3-D multicellular spheroids into microtiter plates.
Talanta. 2018 Jan 15;177:74-76. doi: 10.1016/j.talanta.2017.09.022. Epub 2017 Sep 9.
5
Three-Dimensional Cell Cultures in Drug Discovery and Development.
SLAS Discov. 2017 Jun;22(5):456-472. doi: 10.1177/1087057117696795.
6
A 1536-Well 3D Viability Assay to Assess the Cytotoxic Effect of Drugs on Spheroids.
SLAS Discov. 2017 Jun;22(5):516-524. doi: 10.1177/2472555216686308. Epub 2017 Jan 13.
7
Life is 3D: Boosting Spheroid Function for Tissue Engineering.
Trends Biotechnol. 2017 Feb;35(2):133-144. doi: 10.1016/j.tibtech.2016.08.004. Epub 2016 Sep 12.
8
3D Printing in the Laboratory: Maximize Time and Funds with Customized and Open-Source Labware.
J Lab Autom. 2016 Aug;21(4):489-95. doi: 10.1177/2211068216649578. Epub 2016 May 19.
9
Three-dimensional culture systems in cancer research: Focus on tumor spheroid model.
Pharmacol Ther. 2016 Jul;163:94-108. doi: 10.1016/j.pharmthera.2016.03.013. Epub 2016 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验