Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain.
UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
Cell Mol Life Sci. 2019 Oct;76(20):3987-4008. doi: 10.1007/s00018-019-03196-0. Epub 2019 Jun 21.
Polyamines (PAs) are essential organic polycations for cell viability along the whole phylogenetic scale. In mammals, they are involved in the most important physiological processes: cell proliferation and viability, nutrition, fertility, as well as nervous and immune systems. Consequently, altered polyamine metabolism is involved in a series of pathologies. Due to their pathophysiological importance, PA metabolism has evolved to be a very robust metabolic module, interconnected with the other essential metabolic modules for gene expression and cell proliferation/differentiation. Two different PA sources exist for animals: PA coming from diet and endogenous synthesis. In the first section of this work, the molecular characteristics of PAs are presented as determinant of their roles in living organisms. In a second section, the metabolic specificities of mammalian PA metabolism are reviewed, as well as some obscure aspects on it. This second section includes information on mammalian cell/tissue-dependent PA-related gene expression and information on crosstalk with the other mammalian metabolic modules. The third section presents a synthesis of the physiological processes described as modulated by PAs in humans and/or experimental animal models, the molecular bases of these regulatory mechanisms known so far, as well as the most important gaps of information, which explain why knowledge around the specific roles of PAs in human physiology is still considered a "mysterious" subject. In spite of its robustness, PA metabolism can be altered under different exogenous and/or endogenous circumstances so leading to the loss of homeostasis and, therefore, to the promotion of a pathology. The available information will be summarized in the fourth section of this review. The different sections of this review also point out the lesser-known aspects of the topic. Finally, future prospects to advance on these still obscure gaps of knowledge on the roles on PAs on human physiopathology are discussed.
多胺(PAs)是整个进化尺度上细胞活力所必需的有机聚阳离子。在哺乳动物中,它们参与最重要的生理过程:细胞增殖和活力、营养、生育以及神经和免疫系统。因此,多胺代谢的改变与一系列病理有关。由于其病理生理学的重要性,PA 代谢已经发展成为一个非常稳健的代谢模块,与其他与基因表达和细胞增殖/分化相关的基本代谢模块相互关联。动物有两种不同的 PA 来源:来自饮食和内源性合成的 PA。在这项工作的第一部分,介绍了 PAs 的分子特征,作为它们在生物体中作用的决定因素。在第二部分,回顾了哺乳动物 PA 代谢的代谢特异性,以及一些关于它的模糊方面。这第二部分包括关于哺乳动物细胞/组织依赖性与 PA 相关的基因表达的信息,以及与其他哺乳动物代谢模块的串扰信息。第三部分总结了 PAs 调节人类和/或实验动物模型中生理过程的信息,迄今为止已知的这些调节机制的分子基础,以及最重要的信息空白,这解释了为什么多胺在人类生理学中的特定作用的知识仍然被认为是一个“神秘”的主题。尽管其稳健性,PA 代谢可以在不同的外源和/或内源情况下改变,从而导致内稳态的丧失,因此促进病理学的发生。在这篇综述的第四部分,将总结可用的信息。本综述的不同部分还指出了该主题不太为人知的方面。最后,讨论了在人类病理生理学中 PA 作用的这些仍然模糊的知识空白方面取得进展的未来前景。