Suppr超能文献

一个用于分析和探索单细胞转录组数据的可访问的交互式基因模式笔记本。

An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.

作者信息

Mah Clarence K, Wenzel Alexander T, Juarez Edwin F, Tabor Thorin, Reich Michael M, Mesirov Jill P

机构信息

Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.

Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA.

出版信息

F1000Res. 2018 Aug 16;7:1306. doi: 10.12688/f1000research.15830.2. eCollection 2018.

Abstract

Single-cell RNA sequencing (scRNA-seq) has emerged as a popular method to profile gene expression at the resolution of individual cells. While there have been methods and software specifically developed to analyze scRNA-seq data, they are most accessible to users who program. We have created a scRNA-seq clustering analysis GenePattern Notebook that provides an interactive, easy-to-use interface for data analysis and exploration of scRNA-Seq data, without the need to write or view any code. The notebook provides a standard scRNA-seq analysis workflow for pre-processing data, identification of sub-populations of cells by clustering, and exploration of biomarkers to characterize heterogeneous cell populations and delineate cell types.

摘要

单细胞RNA测序(scRNA-seq)已成为一种流行的方法,可在单个细胞水平上分析基因表达。虽然已经有专门用于分析scRNA-seq数据的方法和软件,但对于编程用户来说最容易使用。我们创建了一个scRNA-seq聚类分析基因模式笔记本,它提供了一个交互式、易于使用的界面,用于scRNA-Seq数据分析和探索,而无需编写或查看任何代码。该笔记本提供了一个标准的scRNA-seq分析工作流程,用于数据预处理、通过聚类识别细胞亚群,以及探索生物标志物以表征异质细胞群体和划分细胞类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d793/6611145/0a61c3674fbc/f1000research-7-20652-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验