Mah Clarence K, Wenzel Alexander T, Juarez Edwin F, Tabor Thorin, Reich Michael M, Mesirov Jill P
Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
F1000Res. 2018 Aug 16;7:1306. doi: 10.12688/f1000research.15830.2. eCollection 2018.
Single-cell RNA sequencing (scRNA-seq) has emerged as a popular method to profile gene expression at the resolution of individual cells. While there have been methods and software specifically developed to analyze scRNA-seq data, they are most accessible to users who program. We have created a scRNA-seq clustering analysis GenePattern Notebook that provides an interactive, easy-to-use interface for data analysis and exploration of scRNA-Seq data, without the need to write or view any code. The notebook provides a standard scRNA-seq analysis workflow for pre-processing data, identification of sub-populations of cells by clustering, and exploration of biomarkers to characterize heterogeneous cell populations and delineate cell types.
单细胞RNA测序(scRNA-seq)已成为一种流行的方法,可在单个细胞水平上分析基因表达。虽然已经有专门用于分析scRNA-seq数据的方法和软件,但对于编程用户来说最容易使用。我们创建了一个scRNA-seq聚类分析基因模式笔记本,它提供了一个交互式、易于使用的界面,用于scRNA-Seq数据分析和探索,而无需编写或查看任何代码。该笔记本提供了一个标准的scRNA-seq分析工作流程,用于数据预处理、通过聚类识别细胞亚群,以及探索生物标志物以表征异质细胞群体和划分细胞类型。