Suppr超能文献

相似文献

1
Reconciling modern machine-learning practice and the classical bias-variance trade-off.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15849-15854. doi: 10.1073/pnas.1903070116. Epub 2019 Jul 24.
2
Memorizing without overfitting: Bias, variance, and interpolation in overparameterized models.
Phys Rev Res. 2022 Mar-May;4(1). doi: 10.1103/physrevresearch.4.013201. Epub 2022 Mar 15.
3
Understanding Double Descent Using VC-Theoretical Framework.
IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):18838-18847. doi: 10.1109/TNNLS.2024.3388873. Epub 2024 Dec 2.
4
A high-bias, low-variance introduction to Machine Learning for physicists.
Phys Rep. 2019 May 30;810:1-124. doi: 10.1016/j.physrep.2019.03.001. Epub 2019 Mar 14.
5
Experimental Design for Overparameterized Learning With Application to Single Shot Deep Active Learning.
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11766-11777. doi: 10.1109/TPAMI.2023.3287042. Epub 2023 Sep 5.
6
Bias-variance decomposition of overparameterized regression with random linear features.
Phys Rev E. 2022 Aug;106(2-2):025304. doi: 10.1103/PhysRevE.106.025304.
8
Trade-off between training and testing ratio in machine learning for medical image processing.
PeerJ Comput Sci. 2024 Sep 6;10:e2245. doi: 10.7717/peerj-cs.2245. eCollection 2024.
9
Geometry of Energy Landscapes and the Optimizability of Deep Neural Networks.
Phys Rev Lett. 2020 Mar 13;124(10):108301. doi: 10.1103/PhysRevLett.124.108301.
10
Conceptual complexity and the bias/variance tradeoff.
Cognition. 2011 Jan;118(1):2-16. doi: 10.1016/j.cognition.2010.10.004.

引用本文的文献

1
Rician Likelihood Loss for Quantitative MRI With Self-Supervised Deep Learning.
NMR Biomed. 2025 Oct;38(10):e70136. doi: 10.1002/nbm.70136.
3
RiskPath: Explainable deep learning for multistep biomedical prediction in longitudinal data.
Patterns (N Y). 2025 Apr 28;6(8):101240. doi: 10.1016/j.patter.2025.101240. eCollection 2025 Aug 8.
4
Exploring an EM-algorithm for banded regression in computational neuroscience.
Imaging Neurosci (Camb). 2024 May 20;2. doi: 10.1162/imag_a_00155. eCollection 2024.
5
TPOT-NN: augmenting tree-based automated machine learning with neural network estimators.
Genet Program Evolvable Mach. 2021 Jun;22(2):207-227. doi: 10.1007/s10710-021-09401-z. Epub 2021 Mar 2.
6
Mapping the landscape of machine learning in chronic disease management: A comprehensive bibliometric study.
Digit Health. 2025 Jul 23;11:20552076251361614. doi: 10.1177/20552076251361614. eCollection 2025 Jan-Dec.
7
Can Informativity Effects Be Predictability Effects in Disguise?
Entropy (Basel). 2025 Jul 10;27(7):739. doi: 10.3390/e27070739.
10
Asymptotic theory of in-context learning by linear attention.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2502599122. doi: 10.1073/pnas.2502599122. Epub 2025 Jul 9.

本文引用的文献

1
High-dimensional dynamics of generalization error in neural networks.
Neural Netw. 2020 Dec;132:428-446. doi: 10.1016/j.neunet.2020.08.022. Epub 2020 Sep 5.
2
Homo heuristicus: why biased minds make better inferences.
Top Cogn Sci. 2009 Jan;1(1):107-43. doi: 10.1111/j.1756-8765.2008.01006.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验