Suppr超能文献

儿科重症监护病房中用于早期识别脓毒症的预测分析:捕捉年龄背景。

Predictive analytics in the pediatric intensive care unit for early identification of sepsis: capturing the context of age.

机构信息

Department of Pediatrics, Division of Pediatric Critical Care, University of Virginia School of Medicine, Charlottesville, VA, USA.

Center for Advanced Medical Analytics, University of Virginia, Charlottesville, VA, USA.

出版信息

Pediatr Res. 2019 Nov;86(5):655-661. doi: 10.1038/s41390-019-0518-1. Epub 2019 Jul 31.

Abstract

BACKGROUND

Early recognition of patients at risk for sepsis is paramount to improve clinical outcomes. We hypothesized that subtle signatures of illness are present in physiological and biochemical time series of pediatric-intensive care unit (PICU) patients in the early stages of sepsis.

METHODS

We developed multivariate models in a retrospective observational cohort to predict the clinical diagnosis of sepsis in children. We focused on age as a predictor and asked whether random forest models, with their potential for multiple cut points, had better performance than logistic regression.

RESULTS

One thousand seven hundred and eleven admissions for 1425 patients admitted to a mixed cardiac and medical/surgical PICU were included. We identified, through individual chart review, 187 sepsis diagnoses that were not within 14 days of a prior sepsis diagnosis. Multivariate models predicted sepsis in the next 24 h: cross-validated C-statistic for logistic regression and random forest were 0.74 (95% confidence interval (CI): 0.71-0.77) and 0.76 (95% CI: 0.73-0.79), respectively.

CONCLUSIONS

Statistical models based on physiological and biochemical data already available in the PICU identify high-risk patients up to 24 h prior to the clinical diagnosis of sepsis. The random forest model was superior to logistic regression in capturing the context of age.

摘要

背景

早期识别脓毒症高危患者对于改善临床结局至关重要。我们假设在脓毒症早期,儿科重症监护病房(PICU)患者的生理和生化时间序列中存在疾病的细微特征。

方法

我们在回顾性观察队列中开发了多变量模型,以预测儿童脓毒症的临床诊断。我们关注年龄作为预测因素,并询问随机森林模型是否具有多个切点,其性能是否优于逻辑回归。

结果

共纳入 1425 名患者的 1711 例次入住混合心脏和内科/外科 PICU 的住院记录。通过对个别病历进行回顾,我们发现了 187 例未在先前脓毒症诊断后 14 天内确诊的脓毒症诊断。多变量模型预测了下一个 24 小时内的脓毒症:逻辑回归和随机森林的交叉验证 C 统计量分别为 0.74(95%置信区间(CI):0.71-0.77)和 0.76(95% CI:0.73-0.79)。

结论

基于 PICU 中已经可用的生理和生化数据的统计模型可以在临床诊断脓毒症前 24 小时识别高危患者。随机森林模型在捕捉年龄背景方面优于逻辑回归。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验