School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom.
Department of Chemistry, University of Oxford, Oxford, United Kingdom.
Antimicrob Agents Chemother. 2019 Sep 23;63(10). doi: 10.1128/AAC.00564-19. Print 2019 Oct.
β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing , with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI-β-lactam combinations.
β-内酰胺酶的产生是革兰氏阴性菌产生β-内酰胺耐药的主要机制。需要使用对丝氨酸β-内酰胺酶(SBL)产生菌有效的β-内酰胺酶抑制剂(BLIs),特别是对广泛传播的 A 类酶的菌株。雷利巴坦是一种二氮杂二环辛烷(DBO)BLI,目前正在进行与亚胺培南联合治疗多药耐药菌引起的感染的 3 期临床试验。我们表明,雷利巴坦抑制五种临床上重要的 A 类 SBL(尽管它们的活性谱不同),包括染色体和质粒携带的酶,即扩展谱β-内酰胺酶 L2(抑制常数 3μM)和 CTX-M-15(21μM)以及碳青霉烯酶 KPC-2、-3 和 -4(1 至 5μM)。与临床批准的 DBO 阿维巴坦相比,雷利巴坦对纯化的 A 类 SBL 的抑制作用较差(半最大抑制浓度[IC]相差 9 至 120 倍)。MIC 测定表明,雷利巴坦与产 KPC 的 协同增强β-内酰胺(亚胺培南)的活性,与阿维巴坦(头孢他啶)的活性相似。与阿维巴坦相比,雷利巴坦与阿佐仑胺联合使用对 K279a 的效果较差。雷利巴坦与 CTX-M-15、L2、KPC-2、KPC-3 和 KPC-4 结合的 X 射线晶体结构表明,其 C2 连接的哌啶环可能与 Asn104(CTX-M-15)或 His/Trp105(L2 和 KPCs)发生空间冲突,这解释了它的抑制活性不如阿维巴坦,因为阿维巴坦的 C2 羧酰胺基更小。质谱和晶体学数据显示,KPC-2、-3 和 -4 缓慢、pH 依赖性地使雷利巴坦脱硫。这项对五种临床上重要的 A 类 SBL 中雷利巴坦结合的全面比较将为未来 DBO 的设计提供信息,旨在提高 BLI-β-内酰胺联合治疗的临床疗效。