Suppr超能文献

雷巴他定对 A 类β-内酰胺酶抑制的分子基础。

Molecular Basis of Class A β-Lactamase Inhibition by Relebactam.

机构信息

School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom.

Department of Chemistry, University of Oxford, Oxford, United Kingdom.

出版信息

Antimicrob Agents Chemother. 2019 Sep 23;63(10). doi: 10.1128/AAC.00564-19. Print 2019 Oct.

Abstract

β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant We show that relebactam inhibits five clinically important class A SBLs (despite their differing spectra of activity), representing both chromosomal and plasmid-borne enzymes, i.e., the extended-spectrum β-lactamases L2 (inhibition constant 3 μM) and CTX-M-15 (21 μM) and the carbapenemases KPC-2, -3, and -4 (1 to 5 μM). Against purified class A SBLs, relebactam is an inferior inhibitor compared with the clinically approved DBO avibactam (9- to 120-fold differences in half maximal inhibitory concentration [IC]). MIC assays indicate relebactam potentiates β-lactam (imipenem) activity against KPC-producing , with similar potency to avibactam (with ceftazidime). Relebactam is less effective than avibactam in combination with aztreonam against K279a. X-ray crystal structures of relebactam bound to CTX-M-15, L2, KPC-2, KPC-3, and KPC-4 reveal its C2-linked piperidine ring can sterically clash with Asn104 (CTX-M-15) or His/Trp105 (L2 and KPCs), rationalizing its poorer inhibition activity than that of avibactam, which has a smaller C2 carboxyamide group. Mass spectrometry and crystallographic data show slow, pH-dependent relebactam desulfation by KPC-2, -3, and -4. This comprehensive comparison of relebactam binding across five clinically important class A SBLs will inform the design of future DBOs, with the aim of improving clinical efficacy of BLI-β-lactam combinations.

摘要

β-内酰胺酶的产生是革兰氏阴性菌产生β-内酰胺耐药的主要机制。需要使用对丝氨酸β-内酰胺酶(SBL)产生菌有效的β-内酰胺酶抑制剂(BLIs),特别是对广泛传播的 A 类酶的菌株。雷利巴坦是一种二氮杂二环辛烷(DBO)BLI,目前正在进行与亚胺培南联合治疗多药耐药菌引起的感染的 3 期临床试验。我们表明,雷利巴坦抑制五种临床上重要的 A 类 SBL(尽管它们的活性谱不同),包括染色体和质粒携带的酶,即扩展谱β-内酰胺酶 L2(抑制常数 3μM)和 CTX-M-15(21μM)以及碳青霉烯酶 KPC-2、-3 和 -4(1 至 5μM)。与临床批准的 DBO 阿维巴坦相比,雷利巴坦对纯化的 A 类 SBL 的抑制作用较差(半最大抑制浓度[IC]相差 9 至 120 倍)。MIC 测定表明,雷利巴坦与产 KPC 的 协同增强β-内酰胺(亚胺培南)的活性,与阿维巴坦(头孢他啶)的活性相似。与阿维巴坦相比,雷利巴坦与阿佐仑胺联合使用对 K279a 的效果较差。雷利巴坦与 CTX-M-15、L2、KPC-2、KPC-3 和 KPC-4 结合的 X 射线晶体结构表明,其 C2 连接的哌啶环可能与 Asn104(CTX-M-15)或 His/Trp105(L2 和 KPCs)发生空间冲突,这解释了它的抑制活性不如阿维巴坦,因为阿维巴坦的 C2 羧酰胺基更小。质谱和晶体学数据显示,KPC-2、-3 和 -4 缓慢、pH 依赖性地使雷利巴坦脱硫。这项对五种临床上重要的 A 类 SBL 中雷利巴坦结合的全面比较将为未来 DBO 的设计提供信息,旨在提高 BLI-β-内酰胺联合治疗的临床疗效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验