From the Institute of Aging Research, Hangzhou Normal University School of Medicine, China (X.Z., H.W., T.L.).
Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, China (W.S., H.W., B.L., D.D., Z.J.).
Circ Res. 2019 Sep 13;125(7):707-719. doi: 10.1161/CIRCRESAHA.119.315529. Epub 2019 Aug 15.
PGC1α (peroxisome proliferator-activated receptor gamma coactivator 1α) represents an attractive target interfering bioenergetics and mitochondrial homeostasis, yet multiple attempts have failed to upregulate PGC1α expression as a therapy, for instance, causing cardiomyopathy.
To determine whether a fine-tuning of PGC1α expression is essential for cardiac homeostasis in a context-dependent manner.
Moderate cardiac-specific PGC1α overexpression through a ROSA26 locus knock-in strategy was utilized in WT (wild type) mice and in G3Terc (third generation of telomerase deficient; hereafter as G3) mouse model, respectively. Ultrastructure, mitochondrial stress, echocardiographic, and a variety of biological approaches were applied to assess mitochondrial physiology and cardiac function. While WT mice showed a relatively consistent PGC1α expression from 3 to 12 months old, age-matched G3 mice exhibited declined PGC1α expression and compromised mitochondrial function. Cardiac-specific overexpression of PGC1α (PGC1α) promoted mitochondrial and cardiac function in 3-month-old WT mice but accelerated cardiac aging and significantly shortened life span in 12-month-old WT mice because of increased mitochondrial damage and reactive oxygen species insult. In contrast, cardiac-specific PGC1α knock in in G3 (G3 PGC1α) mice restored mitochondrial homeostasis and attenuated senescence-associated secretory phenotypes, thereby preserving cardiac performance with age and extending health span. Mechanistically, age-dependent defect in mitophagy is associated with accumulation of damaged mitochondria that leads to cardiac impairment and premature death in 12-month-old WT PGC1α mice. In the context of telomere dysfunction, PGC1α induction replenished energy supply through restoring the compromised mitochondrial biogenesis and thus is beneficial to old G3 heart.
Fine-tuning the expression of PGC1α is crucial for the cardiac homeostasis because the balance between mitochondrial biogenesis and clearance is vital for regulating mitochondrial function and homeostasis. These results reinforce the importance of carefully evaluating the PGC1α-boosting strategies in a context-dependent manner to facilitate clinical translation of novel cardioprotective therapies.
PGC1α(过氧化物酶体增殖物激活受体γ共激活因子 1α)是一个有吸引力的靶点,可以干扰生物能量和线粒体稳态,但多次尝试上调 PGC1α 表达作为一种治疗方法都失败了,例如导致心肌病。
确定 PGC1α 表达的精细调控是否是心脏内环境稳定的必要条件,并且这种调控依赖于特定的上下文。
通过 ROSA26 基因座敲入策略,在 WT(野生型)小鼠和 G3Terc(第三代端粒酶缺陷;以下简称 G3)小鼠模型中分别实现适度的心脏特异性过表达 PGC1α。应用超微结构、线粒体应激、超声心动图和多种生物学方法来评估线粒体生理学和心脏功能。虽然 WT 小鼠从 3 到 12 个月龄时 PGC1α 表达相对一致,但年龄匹配的 G3 小鼠表现出 PGC1α 表达下降和线粒体功能受损。PGC1α 的心脏特异性过表达(PGC1α)在 3 个月大的 WT 小鼠中促进了线粒体和心脏功能,但在 12 个月大的 WT 小鼠中加速了心脏衰老,并显著缩短了寿命,因为增加了线粒体损伤和活性氧物质的损害。相比之下,心脏特异性 PGC1α 敲入 G3(G3 PGC1α)小鼠恢复了线粒体内环境平衡,并减轻了与衰老相关的分泌表型,从而随着年龄的增长保持心脏功能,并延长健康寿命。从机制上讲,与年龄相关的线粒体自噬缺陷与受损线粒体的积累有关,这导致 12 个月大的 WT PGC1α 小鼠心脏损伤和过早死亡。在端粒功能障碍的情况下,PGC1α 的诱导通过恢复受损的线粒体生物发生来补充能量供应,因此对年老的 G3 心脏有益。
PGC1α 表达的精细调控对于心脏内环境稳定至关重要,因为线粒体生物发生和清除之间的平衡对于调节线粒体功能和内环境稳定至关重要。这些结果强调了在特定的上下文条件下仔细评估 PGC1α 增强策略的重要性,以促进新型心脏保护治疗方法的临床转化。