Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859.
Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859;
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17792-17799. doi: 10.1073/pnas.1911252116. Epub 2019 Aug 14.
In higher eukaryotic cells, mitochondria are essential subcellular organelles for energy production, cell signaling, and the biosynthesis of biomolecules. The mitochondrial DNA (mtDNA) genome is indispensable for mitochondrial function because it encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. MtDNA degradation has emerged as an essential quality control measure to maintain mtDNA and to cope with mtDNA damage resulting from endogenous and environmental factors. Among all types of DNA damage known, abasic (AP) sites, sourced from base excision repair and spontaneous base loss, are the most abundant endogenous DNA lesions in cells. In mitochondria, AP sites trigger rapid DNA loss; however, the mechanism and molecular factors involved in the process remain elusive. Herein, we demonstrate that the stability of AP sites is reduced dramatically upon binding to a major mtDNA packaging protein, mitochondrial transcription factor A (TFAM). The half-life of AP lesions within TFAM-DNA complexes is 2 to 3 orders of magnitude shorter than that in free DNA, depending on their position. The TFAM-catalyzed AP-DNA destabilization occurs with nonspecific DNA or mitochondrial light-strand promoter sequence, yielding DNA single-strand breaks and DNA-TFAM cross-links. TFAM-DNA cross-link intermediates prior to the strand scission were also observed upon treating AP-DNA with mitochondrial extracts of human cells. In situ trapping of the reaction intermediates (DNA-TFAM cross-links) revealed that the reaction proceeds via Schiff base chemistry facilitated by lysine residues. Collectively, our data suggest a novel role of TFAM in facilitating the turnover of abasic DNA.
在高等真核细胞中,线粒体是能量产生、细胞信号传递和生物分子生物合成的必需亚细胞细胞器。线粒体 DNA(mtDNA)基因组对于线粒体功能是不可或缺的,因为它编码电子传递链的蛋白亚基和一套完整的转移 RNA 和核糖体 RNA。mtDNA 的降解已成为维持 mtDNA 和应对内源性和环境因素导致的 mtDNA 损伤的必要质量控制措施。在已知的所有类型的 DNA 损伤中,碱基缺失(AP)位点源自碱基切除修复和自发碱基丢失,是细胞中最丰富的内源性 DNA 损伤。在线粒体中,AP 位点会引发快速的 DNA 丢失;然而,该过程中涉及的机制和分子因素仍不清楚。在此,我们证明,AP 位点与主要的 mtDNA 包装蛋白线粒体转录因子 A(TFAM)结合后,其稳定性会显著降低。AP 损伤在 TFAM-DNA 复合物中的半衰期比在游离 DNA 中短 2 到 3 个数量级,具体取决于其位置。TFAM 催化的 AP-DNA 不稳定性发生在非特异性 DNA 或线粒体轻链启动子序列上,导致 DNA 单链断裂和 DNA-TFAM 交联。在用人细胞的线粒体提取物处理 AP-DNA 时,也观察到了在链断裂之前的 TFAM-DNA 交联中间体。反应中间体(DNA-TFAM 交联)的原位捕获表明,该反应通过赖氨酸残基促进的席夫碱化学进行。总的来说,我们的数据表明 TFAM 在促进 AP 碱基的 DNA 周转方面具有新的作用。