Suppr超能文献

吞噬作用检查点作为癌症免疫治疗的新靶点。

Phagocytosis checkpoints as new targets for cancer immunotherapy.

机构信息

Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Centre, Duarte, CA, USA.

Department of Radiation Oncology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA.

出版信息

Nat Rev Cancer. 2019 Oct;19(10):568-586. doi: 10.1038/s41568-019-0183-z. Epub 2019 Aug 28.

Abstract

Cancer immunotherapies targeting adaptive immune checkpoints have substantially improved patient outcomes across multiple metastatic and treatment-refractory cancer types. However, emerging studies have demonstrated that innate immune checkpoints, which interfere with the detection and clearance of malignant cells through phagocytosis and suppress innate immune sensing, also have a key role in tumour-mediated immune escape and might, therefore, be potential targets for cancer immunotherapy. Indeed, preclinical studies and early clinical data have established the promise of targeting phagocytosis checkpoints, such as the CD47-signal-regulatory protein α (SIRPα) axis, either alone or in combination with other cancer therapies. In this Review, we highlight the current understanding of how cancer cells evade the immune system by disrupting phagocytic clearance and the effect of phagocytosis checkpoint blockade on induction of antitumour immune responses. Given the role of innate immune cells in priming adaptive immune responses, an improved understanding of the tumour-intrinsic processes that inhibit essential immune surveillance processes, such as phagocytosis and innate immune sensing, could pave the way for the development of highly effective combination immunotherapy strategies that modulate both innate and adaptive antitumour immune responses.

摘要

癌症免疫疗法针对适应性免疫检查点,在多种转移性和治疗耐药性癌症类型中显著改善了患者的预后。然而,新出现的研究表明,先天免疫检查点通过吞噬作用干扰对恶性细胞的检测和清除,并抑制先天免疫感应,在肿瘤介导的免疫逃逸中也起着关键作用,因此可能成为癌症免疫治疗的潜在靶点。事实上,临床前研究和早期临床数据已经证实了靶向吞噬作用检查点的潜力,例如 CD47-信号调节蛋白 α(SIRPα)轴,单独或与其他癌症疗法联合使用。在这篇综述中,我们强调了目前对癌细胞通过破坏吞噬清除来逃避免疫系统以及吞噬作用检查点阻断对诱导抗肿瘤免疫反应的影响的理解。鉴于先天免疫细胞在启动适应性免疫反应中的作用,对抑制吞噬作用和先天免疫感应等基本免疫监视过程的肿瘤内在过程的深入了解,可能为开发高度有效的组合免疫治疗策略铺平道路,这些策略可以调节先天和适应性抗肿瘤免疫反应。

相似文献

1
Phagocytosis checkpoints as new targets for cancer immunotherapy.
Nat Rev Cancer. 2019 Oct;19(10):568-586. doi: 10.1038/s41568-019-0183-z. Epub 2019 Aug 28.
2
CD47/SIRPα pathway mediates cancer immune escape and immunotherapy.
Int J Biol Sci. 2021 Jul 25;17(13):3281-3287. doi: 10.7150/ijbs.60782. eCollection 2021.
3
Emerging phagocytosis checkpoints in cancer immunotherapy.
Signal Transduct Target Ther. 2023 Mar 7;8(1):104. doi: 10.1038/s41392-023-01365-z.
4
Cancer immunotherapy targeting the CD47/SIRPα axis.
Eur J Cancer. 2017 May;76:100-109. doi: 10.1016/j.ejca.2017.02.013. Epub 2017 Mar 10.
6
SIRPα-CD47 Immune Checkpoint Blockade in Anticancer Therapy.
Trends Immunol. 2018 Mar;39(3):173-184. doi: 10.1016/j.it.2017.12.005. Epub 2018 Jan 11.
7
Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.
MAbs. 2018 Feb/Mar;10(2):315-324. doi: 10.1080/19420862.2017.1409319. Epub 2017 Dec 20.
8
The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.
Immunol Rev. 2017 Mar;276(1):145-164. doi: 10.1111/imr.12527.
9
Deciphering the role of CD47 in cancer immunotherapy.
J Adv Res. 2024 Sep;63:129-158. doi: 10.1016/j.jare.2023.10.009. Epub 2023 Oct 28.
10
The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy.
Life Sci. 2021 May 15;273:119150. doi: 10.1016/j.lfs.2021.119150. Epub 2021 Mar 1.

引用本文的文献

1
Roles of the phagocytosis checkpoint in radiotherapy.
Cell Death Dis. 2025 Aug 20;16(1):630. doi: 10.1038/s41419-025-07921-5.
3
Nanotechnology for immuno-oncology.
Nat Cancer. 2025 Aug 7. doi: 10.1038/s43018-025-01025-x.
5
SMAC mimetics induce human macrophages to phagocytose live cancer cells.
Immunother Adv. 2025 Jul 9;5(1):ltaf026. doi: 10.1093/immadv/ltaf026. eCollection 2025.
7
Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance.
Int J Mol Sci. 2025 Jul 20;26(14):6954. doi: 10.3390/ijms26146954.
8
Cancer Vaccination and Immune-Based Approaches in Pancreatic Cancer.
Cancers (Basel). 2025 Jul 15;17(14):2356. doi: 10.3390/cancers17142356.
9
Experimental models for developing oncolytic virotherapy for metastatic prostate cancer.
Front Immunol. 2025 Jul 10;16:1626432. doi: 10.3389/fimmu.2025.1626432. eCollection 2025.

本文引用的文献

1
Targeting CD47 in Sézary syndrome with SIRPαFc.
Blood Adv. 2019 Apr 9;3(7):1145-1153. doi: 10.1182/bloodadvances.2018030577.
2
Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy.
Nat Med. 2019 Apr;25(4):612-619. doi: 10.1038/s41591-019-0356-z. Epub 2019 Mar 4.
3
First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers.
J Clin Oncol. 2019 Apr 20;37(12):946-953. doi: 10.1200/JCO.18.02018. Epub 2019 Feb 27.
5
Cancer cell-expressed SLAMF7 is not required for CD47-mediated phagocytosis.
Nat Commun. 2019 Feb 1;10(1):533. doi: 10.1038/s41467-018-08013-z.
6
Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma.
Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):997-1006. doi: 10.1073/pnas.1721434116. Epub 2019 Jan 2.
7
Immune checkpoint inhibitors: recent progress and potential biomarkers.
Exp Mol Med. 2018 Dec 13;50(12):1-11. doi: 10.1038/s12276-018-0191-1.
8
Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens.
Nat Genet. 2018 Dec;50(12):1716-1727. doi: 10.1038/s41588-018-0254-1. Epub 2018 Nov 5.
9
CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma.
N Engl J Med. 2018 Nov 1;379(18):1711-1721. doi: 10.1056/NEJMoa1807315.
10
Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity.
J Clin Invest. 2018 Dec 3;128(12):5647-5662. doi: 10.1172/JCI97570. Epub 2018 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验