Suppr超能文献

线粒体损伤和 STING 通路的激活导致肾脏炎症和纤维化。

Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis.

机构信息

Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.

Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.

出版信息

Cell Metab. 2019 Oct 1;30(4):784-799.e5. doi: 10.1016/j.cmet.2019.08.003. Epub 2019 Aug 29.

Abstract

Fibrosis is the final common pathway leading to end-stage renal failure. By analyzing the kidneys of patients and animal models with fibrosis, we observed a significant mitochondrial defect, including the loss of the mitochondrial transcription factor A (TFAM) in kidney tubule cells. Here, we generated mice with tubule-specific deletion of TFAM (Ksp-Cre/Tfam). While these mice developed severe mitochondrial loss and energetic deficit by 6 weeks of age, kidney fibrosis, immune cell infiltration, and progressive azotemia causing death were only observed around 12 weeks of age. In renal cells of TFAM KO (knockout) mice, aberrant packaging of the mitochondrial DNA (mtDNA) resulted in its cytosolic translocation, activation of the cytosolic cGAS-stimulator of interferon genes (STING) DNA sensing pathway, and thus cytokine expression and immune cell recruitment. Ablation of STING ameliorated kidney fibrosis in mouse models of chronic kidney disease, demonstrating how TFAM sequesters mtDNA to limit the inflammation leading to fibrosis.

摘要

纤维化是导致终末期肾衰竭的共同途径。通过分析纤维化患者和动物模型的肾脏,我们观察到一个显著的线粒体缺陷,包括肾小管细胞中线粒体转录因子 A (TFAM) 的缺失。在这里,我们生成了小管特异性缺失 TFAM 的小鼠 (Ksp-Cre/Tfam)。虽然这些小鼠在 6 周龄时就出现了严重的线粒体丢失和能量不足,但只有在 12 周龄左右才观察到肾纤维化、免疫细胞浸润和进行性氮血症导致死亡。在 TFAM KO (敲除) 小鼠的肾细胞中,线粒体 DNA (mtDNA) 的异常包装导致其在细胞质中的易位,激活细胞质 cGAS-干扰素基因刺激物 (STING) DNA 感应途径,从而导致细胞因子表达和免疫细胞募集。STING 的消融改善了慢性肾脏病小鼠模型的肾纤维化,证明了 TFAM 如何隔离 mtDNA 来限制导致纤维化的炎症。

相似文献

1
Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis.
Cell Metab. 2019 Oct 1;30(4):784-799.e5. doi: 10.1016/j.cmet.2019.08.003. Epub 2019 Aug 29.
2
Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury.
Cell Rep. 2019 Oct 29;29(5):1261-1273.e6. doi: 10.1016/j.celrep.2019.09.050.
3
Zhen Wu decoction represses renal fibrosis by invigorating tubular NRF2 and TFAM to fuel mitochondrial bioenergetics.
Phytomedicine. 2023 Jan;108:154495. doi: 10.1016/j.phymed.2022.154495. Epub 2022 Oct 8.
5
Mitochondrial DNA leakage induces odontoblast inflammation via the cGAS-STING pathway.
Cell Commun Signal. 2021 May 20;19(1):58. doi: 10.1186/s12964-021-00738-7.
6
STING/ACSL4 axis-dependent ferroptosis and inflammation promote hypertension-associated chronic kidney disease.
Mol Ther. 2023 Oct 4;31(10):3084-3103. doi: 10.1016/j.ymthe.2023.07.026. Epub 2023 Aug 2.
7
TFAM downregulation promotes autophagy and ESCC survival through mtDNA stress-mediated STING pathway.
Oncogene. 2022 Jul;41(30):3735-3746. doi: 10.1038/s41388-022-02365-z. Epub 2022 Jun 24.
8
Jagged1/Notch2 controls kidney fibrosis via Tfam-mediated metabolic reprogramming.
PLoS Biol. 2018 Sep 18;16(9):e2005233. doi: 10.1371/journal.pbio.2005233. eCollection 2018 Sep.
9
Mitochondrial DNA-Mediated Inflammation in Acute Kidney Injury and Chronic Kidney Disease.
Oxid Med Cell Longev. 2021 Jun 29;2021:9985603. doi: 10.1155/2021/9985603. eCollection 2021.
10
Renal tubular in TCE-sensitization-induced immune kidney injury: Role of mitochondrial DNA in activating the cGAS-STING signaling pathway.
Int Immunopharmacol. 2022 Dec;113(Pt B):109432. doi: 10.1016/j.intimp.2022.109432. Epub 2022 Nov 11.

引用本文的文献

1
Improving outcomes in kidney transplantation through advances in donor organ perfusion.
Nat Rev Nephrol. 2025 Sep 9. doi: 10.1038/s41581-025-00993-8.
3
Advances in cGAS-STING Signaling in Fibrosis Diseases: Therapeutic Target in Pathological Scars.
J Inflamm Res. 2025 Aug 9;18:10777-10793. doi: 10.2147/JIR.S541656. eCollection 2025.
4
Mitochondrial DNA copy number as a genetic determinant of renal function: insights from bidirectional Mendelian randomization.
Ren Fail. 2025 Dec;47(1):2542522. doi: 10.1080/0886022X.2025.2542522. Epub 2025 Aug 10.
6
Sulfide Quinone Oxidoreductase Alleviates Acute Ulcerative Colitis by Regulating Mitochondrial Dysfunction.
MedComm (2020). 2025 Jul 13;6(7):e70285. doi: 10.1002/mco2.70285. eCollection 2025 Jul.
8
Mitochondrial dysfunction in acute and post-acute phases of COVID-19 and risk of non-communicable diseases.
NPJ Metab Health Dis. 2024 Dec 4;2(1):36. doi: 10.1038/s44324-024-00038-x.
9
Molecular Mechanisms of Sepsis-Associated Acute Kidney Injury.
J Am Soc Nephrol. 2025 Jul 2. doi: 10.1681/ASN.0000000809.

本文引用的文献

1
Measurement of Mitochondrial DNA Release in Response to ER Stress.
Bio Protoc. 2016 Jun 20;6(12). doi: 10.21769/BioProtoc.1839.
2
A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes.
Nat Med. 2019 May;25(5):805-813. doi: 10.1038/s41591-019-0415-5. Epub 2019 Apr 22.
3
Mitochondrial dynamics in exercise physiology.
Pflugers Arch. 2020 Feb;472(2):137-153. doi: 10.1007/s00424-019-02258-3. Epub 2019 Feb 1.
4
Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease.
Nat Med. 2018 Nov;24(11):1721-1731. doi: 10.1038/s41591-018-0194-4. Epub 2018 Oct 1.
6
Jagged1/Notch2 controls kidney fibrosis via Tfam-mediated metabolic reprogramming.
PLoS Biol. 2018 Sep 18;16(9):e2005233. doi: 10.1371/journal.pbio.2005233. eCollection 2018 Sep.
7
Single-Cell Transcriptomics of a Human Kidney Allograft Biopsy Specimen Defines a Diverse Inflammatory Response.
J Am Soc Nephrol. 2018 Aug;29(8):2069-2080. doi: 10.1681/ASN.2018020125. Epub 2018 Jul 6.
8
Targeting STING with covalent small-molecule inhibitors.
Nature. 2018 Jul;559(7713):269-273. doi: 10.1038/s41586-018-0287-8. Epub 2018 Jul 4.
9
10
Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4910-E4919. doi: 10.1073/pnas.1804965115. Epub 2018 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验