Suppr超能文献

心脏 PET 中的身体运动检测和校正:体模和人体研究。

Body motion detection and correction in cardiac PET: Phantom and human studies.

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.

Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA.

出版信息

Med Phys. 2019 Nov;46(11):4898-4906. doi: 10.1002/mp.13815. Epub 2019 Oct 8.

Abstract

PURPOSE

Patient body motion during a cardiac positron emission tomography (PET) scan can severely degrade image quality. We propose and evaluate a novel method to detect, estimate, and correct body motion in cardiac PET.

METHODS

Our method consists of three key components: motion detection, motion estimation, and motion-compensated image reconstruction. For motion detection, we first divide PET list-mode data into 1-s bins and compute the center of mass (COM) of the coincidences' distribution in each bin. We then compute the covariance matrix within a 25-s sliding window over the COM signals inside the window. The sum of the eigenvalues of the covariance matrix is used to separate the list-mode data into "static" (i.e., body motion free) and "moving" (i.e. contaminated by body motion) frames. Each moving frame is further divided into a number of evenly spaced sub-frames (referred to as "sub-moving" frames), in which motion is assumed to be negligible. For motion estimation, we first reconstruct the data in each static and sub-moving frame using a rapid back-projection technique. We then select the longest static frame as the reference frame and estimate elastic motion transformations to the reference frame from all other static and sub-moving frames using nonrigid registration. For motion-compensated image reconstruction, we reconstruct all the list-mode data into a single image volume in the reference frame by incorporating the estimated motion transformations in the PET system matrix. We evaluated the performance of our approach in both phantom and human studies.

RESULTS

Visually, the motion-corrected (MC) PET images obtained using the proposed method have better quality and fewer motion artifacts than the images reconstructed without motion correction (NMC). Quantitative analysis indicates that MC yields higher myocardium to blood pool concentration ratios. MC also yields sharper myocardium than NMC.

CONCLUSIONS

The proposed body motion correction method improves image quality of cardiac PET.

摘要

目的

在心脏正电子发射断层扫描(PET)期间,患者身体运动会严重降低图像质量。我们提出并评估了一种新颖的方法,用于检测、估计和校正心脏 PET 中的身体运动。

方法

我们的方法由三个关键组件组成:运动检测、运动估计和运动补偿图像重建。对于运动检测,我们首先将 PET 列表模式数据分为 1 秒的 bin,并计算每个 bin 中符合事件分布的质心(COM)。然后,我们在窗口内的 COM 信号上计算 25 秒滑动窗口内的协方差矩阵。协方差矩阵的特征值之和用于将列表模式数据分为“静态”(即无身体运动)和“移动”(即受身体运动污染)帧。每个移动帧进一步分为多个均匀间隔的子帧(称为“子移动”帧),其中运动可以忽略不计。对于运动估计,我们首先使用快速反投影技术重建每个静态和子移动帧的数据。然后,我们选择最长的静态帧作为参考帧,并使用非刚性配准从所有其他静态和子移动帧中估计到参考帧的弹性运动变换。对于运动补偿图像重建,我们通过在 PET 系统矩阵中合并估计的运动变换,将所有列表模式数据重建到参考帧中的单个图像体积中。我们在体模和人体研究中评估了我们方法的性能。

结果

从视觉上看,与未进行运动校正(NMC)的图像相比,使用所提出的方法获得的运动校正(MC)PET 图像质量更好,运动伪影更少。定量分析表明,MC 可获得更高的心肌与血池浓度比。MC 还产生比 NMC 更清晰的心肌。

结论

所提出的身体运动校正方法可提高心脏 PET 的图像质量。

相似文献

1
Body motion detection and correction in cardiac PET: Phantom and human studies.
Med Phys. 2019 Nov;46(11):4898-4906. doi: 10.1002/mp.13815. Epub 2019 Oct 8.
4
Improved frame-based estimation of head motion in PET brain imaging.
Med Phys. 2016 May;43(5):2443. doi: 10.1118/1.4946814.
6
Data-driven head motion correction for PET using time-of-flight and positron emission particle tracking techniques.
PLoS One. 2022 Aug 31;17(8):e0272768. doi: 10.1371/journal.pone.0272768. eCollection 2022.
7
Reconstruction-Incorporated Respiratory Motion Correction in Clinical Simultaneous PET/MR Imaging for Oncology Applications.
J Nucl Med. 2015 Jun;56(6):884-9. doi: 10.2967/jnumed.114.153007. Epub 2015 Apr 23.
8
Cardiac motion and spillover correction for quantitative PET imaging using dynamic MRI.
Med Phys. 2019 Feb;46(2):726-737. doi: 10.1002/mp.13345. Epub 2019 Jan 15.
9
An iterative image-based inter-frame motion compensation method for dynamic brain PET imaging.
Phys Med Biol. 2022 Feb 2;67(3). doi: 10.1088/1361-6560/ac4a8f.
10

引用本文的文献

1
Effects of List-Mode-Based Intraframe Motion Correction in Dynamic Brain PET Imaging.
IEEE Trans Radiat Plasma Med Sci. 2024 Nov;8(8):950-958. doi: 10.1109/trpms.2024.3432322. Epub 2024 Jul 22.
4
Improvement of motion artifacts using dynamic whole-body F-FDG PET/CT imaging.
Jpn J Radiol. 2024 Apr;42(4):374-381. doi: 10.1007/s11604-023-01513-z. Epub 2023 Dec 14.
5
Supplemental Transmission Aided Attenuation Correction for Quantitative Cardiac PET.
IEEE Trans Med Imaging. 2024 Mar;43(3):1125-1137. doi: 10.1109/TMI.2023.3330668. Epub 2024 Mar 5.
6
Inter-pass motion correction for whole-body dynamic PET and parametric imaging.
IEEE Trans Radiat Plasma Med Sci. 2023 Apr;7(4):344-353. doi: 10.1109/trpms.2022.3227576. Epub 2022 Dec 8.
7
Impact of motion correction on [F]-MK6240 tau PET imaging.
Phys Med Biol. 2023 May 15;68(10). doi: 10.1088/1361-6560/acd161.
8
Dynamic FDG-PET imaging for differentiating metastatic from non-metastatic lymph nodes of lung cancer.
Front Oncol. 2022 Nov 10;12:1005924. doi: 10.3389/fonc.2022.1005924. eCollection 2022.
10

本文引用的文献

1
Correction of respiratory and cardiac motion in cardiac PET/MR using MR-based motion modeling.
Phys Med Biol. 2018 Nov 14;63(22):225011. doi: 10.1088/1361-6560/aaea97.
2
A Novel Data-Driven Cardiac Gating Signal Extraction Method for PET.
IEEE Trans Med Imaging. 2019 Feb;38(2):629-637. doi: 10.1109/TMI.2018.2868615. Epub 2018 Sep 6.
3
Data-driven gating in PET: Influence of respiratory signal noise on motion resolution.
Med Phys. 2018 Jul;45(7):3205-3213. doi: 10.1002/mp.12987. Epub 2018 Jun 8.
4
Robust real-time extraction of respiratory signals from PET list-mode data.
Phys Med Biol. 2018 May 29;63(11):115009. doi: 10.1088/1361-6560/aac1ac.
5
Blood pool and tissue phase patient motion effects on rubidium PET myocardial blood flow quantification.
J Nucl Cardiol. 2019 Dec;26(6):1918-1929. doi: 10.1007/s12350-018-1256-1. Epub 2018 Mar 23.
6
Significance of the impact of motion compensation on the variability of PET image features.
Phys Med Biol. 2018 Mar 21;63(6):065013. doi: 10.1088/1361-6560/aab180.
7
Radiopharmaceuticals for cardiac imaging: Current status and future trends.
J Nucl Cardiol. 2018 Aug;25(4):1242-1246. doi: 10.1007/s12350-018-1194-y. Epub 2018 Feb 7.
8
PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.
Med Phys. 2017 Dec;44(12):e430-e445. doi: 10.1002/mp.12577. Epub 2017 Oct 23.
9
Enhancing Cardiac PET by Motion Correction Techniques.
Curr Cardiol Rep. 2017 Feb;19(2):14. doi: 10.1007/s11886-017-0825-2.
10
Cardiac and Respiratory Motion Correction for Simultaneous Cardiac PET/MR.
J Nucl Med. 2017 May;58(5):846-852. doi: 10.2967/jnumed.115.171728. Epub 2017 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验