Suppr超能文献

提高对比度和检测能力:[Co]Co-DOTATATE 与 [Cu]Cu-DOTATATE 和 [Ga]Ga-DOTATATE 的成像比较。

Improving Contrast and Detectability: Imaging with [Co]Co-DOTATATE in Comparison with [Cu]Cu-DOTATATE and [Ga]Ga-DOTATATE.

机构信息

PET Unit, Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; and.

Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

出版信息

J Nucl Med. 2020 Feb;61(2):228-233. doi: 10.2967/jnumed.119.233015. Epub 2019 Sep 13.

Abstract

PET imaging at late time points after injection may allow tracer clearance from normal tissue and hence improve image contrast and detectability. Co is a promising isotope with high positron yield and a long half-life suitable for imaging at delayed time points. Here, we compared the 3 radioconjugates [Ga]Ga-DOTATATE, [Cu]Cu-DOTATATE, and [Co]Co-DOTATATE by PET/CT imaging in NOD-SCID mice bearing subcutaneous somatostatin receptor-expressing AR42J tumors. Co and Cu were produced by the Fe(d,n)Co and Ni(p,n)Cu nuclear reactions, whereas Ga was obtained from a Ge/Ga generator. Co and Cu were labeled with DOTATATE by heating in a sodium acetate buffer and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, respectively. AR42J tumor-bearing mice were dynamically scanned 0-1 h after injection. For Cu and Co, additional imaging was also performed at late time points after 4 and 24 h. Dose calculations were based on a known biodistribution. The cumulated disintegrations in each organ were calculated by integration of a fitted exponential function to the biodistribution of each respective organ. Equivalent doses were calculated by OLINDA/EXM using the MIRD formalism. Tumor uptake was rapid from 0 to 1 h after injection for all 3 radioconjugates. Normal-tissue ratios as represented by tumor-to-liver, tumor-to-kidney, and tumor-to-muscle ratios increased significantly over time, with [Co]Co-DOTATATE reaching the highest ratio of all radioconjugates. For [Co]Co-DOTATATE, the tumor-to-liver ratio increased to 65 ± 16 at 4 h and 50 ± 6 at 24 h, which were 15 ( < 0.001) and 30 ( < 0.001) times higher, respectively, than the corresponding ratios for [Cu]Cu-DOTATATE and 5 ( < 0.001) times higher than that of [Ga]Ga-DOTATATE at 1 h. Correspondingly, tumor-to-kidney and tumor-to-muscle ratios for [Co]Co-DOTATATE were 4 ( < 0.001) and 11 ( < 0.001) times higher than that of [Cu]Cu-DOTATATE at 24 h. An equivalent dose was calculated as 9.6E-02 mSv/MBq for [Co]Co-DOTATATE. [Co]Co-DOTATATE demonstrated superior image contrast compared with [Cu]Cu-DOTATATE and [Ga]Ga-DOTATATE for PET imaging of somatostatin receptor-expressing tumors, warranting translation into clinical trials. Dosimetry calculations found that effective doses for [Co]Co-DOTATATE were comparable to those for both [Cu]Cu-DOTATATE and [Ga]Ga-DOTATATE.

摘要

在注射后晚期进行 PET 成像可能允许示踪剂从正常组织中清除,从而提高图像对比度和检测能力。60Co 是一种很有前途的同位素,具有较高的正电子产率和较长的半衰期,适合在延迟时间点成像。在这里,我们通过 PET/CT 成像比较了三种放射性缀合物[Ga]Ga-DOTATATE、[Cu]Cu-DOTATATE 和[Co]Co-DOTATATE 在表达生长抑素受体的 AR42J 皮下肿瘤的 NOD-SCID 小鼠中的情况。60Co 和 63Cu 是通过 Fe(d,n)60Co 和 Ni(p,n)63Cu 核反应产生的,而 67Ga 是从 Ge/Ga 发生器中获得的。通过在醋酸钠缓冲液和 4-(2-羟乙基)-1-哌嗪乙磺酸缓冲液中加热,分别将 DOTATATE 标记到 60Co 和 63Cu 上。在注射后 0-1 h 对 AR42J 肿瘤荷瘤小鼠进行动态扫描。对于 63Cu 和 60Co,还在 4 和 24 h 后进行了晚期成像。剂量计算基于已知的生物分布。通过对每个器官的生物分布进行拟合指数函数积分,计算每个器官的累积衰变数。使用 MIRD 形式主义,通过 OLINDA/EXM 计算等效剂量。在注射后 0-1 h 内,所有三种放射性缀合物在肿瘤中的摄取均迅速增加。代表肿瘤与肝脏、肿瘤与肾脏和肿瘤与肌肉的正常组织比随着时间的推移显著增加,其中[Co]Co-DOTATATE 达到了所有放射性缀合物中最高的比值。对于[Co]Co-DOTATATE,在 4 h 时肿瘤与肝脏的比值增加到 65 ± 16,在 24 h 时增加到 50 ± 6,分别是[Cu]Cu-DOTATATE 相应比值的 15 倍(<0.001)和 30 倍(<0.001),在 1 h 时是[Ga]Ga-DOTATATE 的 5 倍(<0.001)。相应地,在 24 h 时,[Co]Co-DOTATATE 的肿瘤与肾脏和肿瘤与肌肉的比值分别是[Cu]Cu-DOTATATE 的 4 倍(<0.001)和 11 倍(<0.001)。计算出的[Co]Co-DOTATATE 的等效剂量为 9.6E-02 mSv/MBq。与[Cu]Cu-DOTATATE 和[Ga]Ga-DOTATATE 相比,[Co]Co-DOTATATE 对表达生长抑素受体的肿瘤的 PET 成像显示出更好的图像对比度,有必要将其转化为临床试验。剂量计算发现,[Co]Co-DOTATATE 的有效剂量与[Cu]Cu-DOTATATE 和[Ga]Ga-DOTATATE 相当。

相似文献

1
Improving Contrast and Detectability: Imaging with [Co]Co-DOTATATE in Comparison with [Cu]Cu-DOTATATE and [Ga]Ga-DOTATATE.
J Nucl Med. 2020 Feb;61(2):228-233. doi: 10.2967/jnumed.119.233015. Epub 2019 Sep 13.
2
Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study.
J Nucl Med. 2012 Aug;53(8):1207-15. doi: 10.2967/jnumed.111.101469. Epub 2012 Jul 10.
3
Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors.
J Nucl Med. 2013 Oct;54(10):1755-9. doi: 10.2967/jnumed.113.120600. Epub 2013 Aug 8.
5
[F]AlF-NOTA-octreotide PET imaging: biodistribution, dosimetry and first comparison with [Ga]Ga-DOTATATE in neuroendocrine tumour patients.
Eur J Nucl Med Mol Imaging. 2020 Dec;47(13):3033-3046. doi: 10.1007/s00259-020-04918-4. Epub 2020 Jul 2.
6
Parametric Net Influx Rate Images of Ga-DOTATOC and Ga-DOTATATE: Quantitative Accuracy and Improved Image Contrast.
J Nucl Med. 2017 May;58(5):744-749. doi: 10.2967/jnumed.116.180380. Epub 2016 Oct 27.

引用本文的文献

1
Radiocobalt theranostic applications: current landscape, challenges, and future directions.
Front Nucl Med. 2025 Aug 6;5:1663748. doi: 10.3389/fnume.2025.1663748. eCollection 2025.
2
FDA-approved drugs featuring macrocycles or medium-sized rings.
Arch Pharm (Weinheim). 2025 Jan;358(1):e2400890. doi: 10.1002/ardp.202400890.
4
PET imaging of Mn labeled DOTATATE and DOTAJR11.
Sci Rep. 2025 Jan 18;15(1):2395. doi: 10.1038/s41598-025-85143-7.
5
Controlling the Redox Chemistry of Cobalt Radiopharmaceuticals.
Angew Chem Int Ed Engl. 2024 Dec 9;63(50):e202412357. doi: 10.1002/anie.202412357. Epub 2024 Nov 5.
6
PET imaging of [52 Mn]Mn-DOTATATE and [52 Mn]Mn-DOTA-JR11.
Res Sq. 2024 Aug 9:rs.3.rs-4684098. doi: 10.21203/rs.3.rs-4684098/v1.
7
Radiolabeling Diaminosarcophagine with Cyclotron-Produced Cobalt-55 and [Co]Co-NT-Sarcage as a Proof of Concept in a Murine Xenograft Model.
Bioconjug Chem. 2024 Mar 20;35(3):412-418. doi: 10.1021/acs.bioconjchem.4c00043. Epub 2024 Feb 27.
8
Preclinical evaluation of [Co]Co-DOTA-PSMA-617 for Auger electron therapy of prostate cancer.
Sci Rep. 2023 Nov 1;13(1):18837. doi: 10.1038/s41598-023-43429-8.
9
Advances in Radionuclides and Radiolabelled Peptides for Cancer Therapeutics.
Pharmaceutics. 2023 Mar 17;15(3):971. doi: 10.3390/pharmaceutics15030971.
10
PET Imaging of the Neurotensin Targeting Peptide NOTA-NT-20.3 Using Cobalt-55, Copper-64 and Gallium-68.
Pharmaceutics. 2022 Dec 6;14(12):2724. doi: 10.3390/pharmaceutics14122724.

本文引用的文献

1
Somatostatin Receptor Expression in Renal Cell Carcinoma-A New Front in the Diagnostics and Treatment of Renal Cell Carcinoma.
Clin Genitourin Cancer. 2018 Jun;16(3):e517-e520. doi: 10.1016/j.clgc.2018.03.011. Epub 2018 Mar 27.
3
Head-to-Head Comparison of Cu-DOTATATE and Ga-DOTATOC PET/CT: A Prospective Study of 59 Patients with Neuroendocrine Tumors.
J Nucl Med. 2017 Mar;58(3):451-457. doi: 10.2967/jnumed.116.180430. Epub 2016 Sep 22.
5
6
PET imaging with the non-pure positron emitters: (55)Co, (86)Y and (124)I.
Phys Med Biol. 2015 May 7;60(9):3479-97. doi: 10.1088/0031-9155/60/9/3479. Epub 2015 Apr 9.
7
Physiology of iron metabolism.
Transfus Med Hemother. 2014 Jun;41(3):213-21. doi: 10.1159/000362888. Epub 2014 May 12.
8
Evaluation of cobalt-labeled octreotide analogs for molecular imaging and auger electron-based radionuclide therapy.
J Nucl Med. 2014 Aug;55(8):1311-6. doi: 10.2967/jnumed.114.137182. Epub 2014 May 29.
9
⁶⁴Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer.
J Med Chem. 2014 Mar 27;57(6):2657-69. doi: 10.1021/jm401921j. Epub 2014 Mar 7.
10
Neuroendocrine tumours: the role of imaging for diagnosis and therapy.
Nat Rev Endocrinol. 2014 Feb;10(2):102-14. doi: 10.1038/nrendo.2013.246. Epub 2013 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验