Suppr超能文献

生成对抗网络在医学影像中的应用:综述

Generative adversarial network in medical imaging: A review.

机构信息

Department of Medical Imaging, University of Saskatchewan, 103 Hospital Dr, Saskatoon, SK S7N 0W8, Canada.

Department of Medical Imaging, University of Saskatchewan, 103 Hospital Dr, Saskatoon, SK S7N 0W8, Canada; Philips Canada, 281 Hillmount Road, Markham, Ontario, ON L6C 2S3, Canada.

出版信息

Med Image Anal. 2019 Dec;58:101552. doi: 10.1016/j.media.2019.101552. Epub 2019 Aug 31.

Abstract

Generative adversarial networks have gained a lot of attention in the computer vision community due to their capability of data generation without explicitly modelling the probability density function. The adversarial loss brought by the discriminator provides a clever way of incorporating unlabeled samples into training and imposing higher order consistency. This has proven to be useful in many cases, such as domain adaptation, data augmentation, and image-to-image translation. These properties have attracted researchers in the medical imaging community, and we have seen rapid adoption in many traditional and novel applications, such as image reconstruction, segmentation, detection, classification, and cross-modality synthesis. Based on our observations, this trend will continue and we therefore conducted a review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.

摘要

生成对抗网络由于能够在不明确建模概率密度函数的情况下生成数据,因此在计算机视觉领域引起了广泛关注。判别器带来的对抗损失为将未标记的样本纳入训练并施加更高阶一致性提供了一种巧妙的方法。事实证明,这在许多情况下都非常有用,例如域自适应、数据增强和图像到图像转换。这些特性吸引了医学成像领域的研究人员,我们已经看到它们在许多传统和新颖的应用中得到了快速采用,例如图像重建、分割、检测、分类和跨模态合成。基于我们的观察,这种趋势将继续下去,因此我们对使用对抗训练方案在医学成像方面的最新进展进行了综述,希望能使对该技术感兴趣的研究人员受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验