Suppr超能文献

减轻转录与增殖之间的拮抗作用可实现近乎确定性的细胞重编程。

Mitigating Antagonism between Transcription and Proliferation Allows Near-Deterministic Cellular Reprogramming.

机构信息

Eli and Edythe Broad CIRM Center, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.

Eli and Edythe Broad CIRM Center, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.

出版信息

Cell Stem Cell. 2019 Oct 3;25(4):486-500.e9. doi: 10.1016/j.stem.2019.08.005. Epub 2019 Sep 12.

Abstract

Although cellular reprogramming enables the generation of new cell types for disease modeling and regenerative therapies, reprogramming remains a rare cellular event. By examining reprogramming of fibroblasts into motor neurons and multiple other somatic lineages, we find that epigenetic barriers to conversion can be overcome by endowing cells with the ability to mitigate an inherent antagonism between transcription and DNA replication. We show that transcription factor overexpression induces unusually high rates of transcription and that sustaining hypertranscription and transgene expression in hyperproliferative cells early in reprogramming is critical for successful lineage conversion. However, hypertranscription impedes DNA replication and cell proliferation, processes that facilitate reprogramming. We identify a chemical and genetic cocktail that dramatically increases the number of cells capable of simultaneous hypertranscription and hyperproliferation by activating topoisomerases. Further, we show that hypertranscribing, hyperproliferating cells reprogram at 100-fold higher, near-deterministic rates. Therefore, relaxing biophysical constraints overcomes molecular barriers to cellular reprogramming.

摘要

虽然细胞重编程可用于生成用于疾病建模和再生疗法的新细胞类型,但重编程仍然是一种罕见的细胞事件。通过研究将成纤维细胞重编程为运动神经元和多种其他体细胞谱系,我们发现可以通过赋予细胞减轻转录和 DNA 复制之间固有拮抗作用的能力来克服转化的表观遗传障碍。我们表明,转录因子过表达会诱导异常高的转录率,并且在重编程的早期阶段维持高转录和转基因表达对于成功的谱系转化至关重要。然而,高转录会阻碍 DNA 复制和细胞增殖,而这些过程有利于重编程。我们发现一种化学和遗传鸡尾酒通过激活拓扑异构酶,可显著增加能够同时进行高转录和高增殖的细胞数量。此外,我们表明,高转录、高增殖的细胞以 100 倍更高的近确定性速率进行重编程。因此,缓解生物物理约束克服了细胞重编程的分子障碍。

相似文献

1
Mitigating Antagonism between Transcription and Proliferation Allows Near-Deterministic Cellular Reprogramming.
Cell Stem Cell. 2019 Oct 3;25(4):486-500.e9. doi: 10.1016/j.stem.2019.08.005. Epub 2019 Sep 12.
2
Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.
Epigenomics. 2016 Aug;8(8):1131-49. doi: 10.2217/epi-2016-0032. Epub 2016 Jul 15.
3
Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules.
Cell Stem Cell. 2019 Feb 7;24(2):328-341.e9. doi: 10.1016/j.stem.2018.11.014. Epub 2018 Dec 13.
4
Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine.
Acc Chem Res. 2017 May 16;50(5):1202-1211. doi: 10.1021/acs.accounts.7b00020. Epub 2017 Apr 28.
5
The oncogene c-Jun impedes somatic cell reprogramming.
Nat Cell Biol. 2015 Jul;17(7):856-67. doi: 10.1038/ncb3193. Epub 2015 Jun 22.
7
Identification of the early and late responder genes during the generation of induced pluripotent stem cells from mouse fibroblasts.
PLoS One. 2017 Feb 2;12(2):e0171300. doi: 10.1371/journal.pone.0171300. eCollection 2017.
9
10
Chemical compound-based direct reprogramming for future clinical applications.
Biosci Rep. 2018 May 8;38(3). doi: 10.1042/BSR20171650. Print 2018 Jun 29.

引用本文的文献

1
Molecular basis of cell fate plasticity - insights from the privileged cells.
Curr Opin Genet Dev. 2025 Aug;93:102354. doi: 10.1016/j.gde.2025.102354. Epub 2025 May 5.
2
Compact transcription factor cassettes generate functional, engraftable motor neurons by direct conversion.
Cell Syst. 2025 Apr 16;16(4):101206. doi: 10.1016/j.cels.2025.101206. Epub 2025 Mar 13.
3
Proliferation history and transcription factor levels drive direct conversion to motor neurons.
Cell Syst. 2025 Apr 16;16(4):101205. doi: 10.1016/j.cels.2025.101205. Epub 2025 Mar 13.
6
20 years of stemness: From stem cells to hypertranscription and back.
Stem Cell Reports. 2025 Mar 11;20(3):102406. doi: 10.1016/j.stemcr.2025.102406. Epub 2025 Feb 6.
7
Fate erasure logic of gene networks underlying direct neuronal conversion of somatic cells by microRNAs.
Cell Rep. 2025 Jan 28;44(1):115153. doi: 10.1016/j.celrep.2024.115153. Epub 2025 Jan 4.
8
Monocyte Invasion into the Retina Restricts the Regeneration of Neurons from Müller Glia.
J Neurosci. 2024 Nov 13;44(46):e0938242024. doi: 10.1523/JNEUROSCI.0938-24.2024.
9
Engineered Transcription Factor Binding Arrays for DNA-based Gene Expression Control in Mammalian Cells.
bioRxiv. 2024 Sep 3:2024.09.03.610999. doi: 10.1101/2024.09.03.610999.
10
Rewinding the Tape to Identify Intrinsic Determinants of Reprogramming Potential.
Cell Reprogram. 2024 Aug;26(4):117-119. doi: 10.1089/cell.2024.0035. Epub 2024 Aug 8.

本文引用的文献

2
Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency.
Cell Stem Cell. 2018 Sep 6;23(3):412-425.e10. doi: 10.1016/j.stem.2018.07.004. Epub 2018 Aug 16.
3
DNA Topoisomerase I differentially modulates R-loops across the human genome.
Genome Biol. 2018 Jul 30;19(1):100. doi: 10.1186/s13059-018-1478-1.
5
Establishment of human pluripotent stem cell-derived pancreatic β-like cells in the mouse pancreas.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3924-3929. doi: 10.1073/pnas.1702059115. Epub 2018 Mar 29.
6
Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons.
Nat Med. 2018 Mar;24(3):313-325. doi: 10.1038/nm.4490. Epub 2018 Feb 5.
7
Reversed graph embedding resolves complex single-cell trajectories.
Nat Methods. 2017 Oct;14(10):979-982. doi: 10.1038/nmeth.4402. Epub 2017 Aug 21.
8
DNA supercoiling during transcription.
Biophys Rev. 2016 Nov;8(Suppl 1):75-87. doi: 10.1007/s12551-016-0215-9. Epub 2016 Jul 13.
9
The Causes and Consequences of Topological Stress during DNA Replication.
Genes (Basel). 2016 Dec 21;7(12):134. doi: 10.3390/genes7120134.
10
Increased global transcription activity as a mechanism of replication stress in cancer.
Nat Commun. 2016 Oct 11;7:13087. doi: 10.1038/ncomms13087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验