Eli and Edythe Broad CIRM Center, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
Eli and Edythe Broad CIRM Center, University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
Cell Stem Cell. 2019 Oct 3;25(4):486-500.e9. doi: 10.1016/j.stem.2019.08.005. Epub 2019 Sep 12.
Although cellular reprogramming enables the generation of new cell types for disease modeling and regenerative therapies, reprogramming remains a rare cellular event. By examining reprogramming of fibroblasts into motor neurons and multiple other somatic lineages, we find that epigenetic barriers to conversion can be overcome by endowing cells with the ability to mitigate an inherent antagonism between transcription and DNA replication. We show that transcription factor overexpression induces unusually high rates of transcription and that sustaining hypertranscription and transgene expression in hyperproliferative cells early in reprogramming is critical for successful lineage conversion. However, hypertranscription impedes DNA replication and cell proliferation, processes that facilitate reprogramming. We identify a chemical and genetic cocktail that dramatically increases the number of cells capable of simultaneous hypertranscription and hyperproliferation by activating topoisomerases. Further, we show that hypertranscribing, hyperproliferating cells reprogram at 100-fold higher, near-deterministic rates. Therefore, relaxing biophysical constraints overcomes molecular barriers to cellular reprogramming.
虽然细胞重编程可用于生成用于疾病建模和再生疗法的新细胞类型,但重编程仍然是一种罕见的细胞事件。通过研究将成纤维细胞重编程为运动神经元和多种其他体细胞谱系,我们发现可以通过赋予细胞减轻转录和 DNA 复制之间固有拮抗作用的能力来克服转化的表观遗传障碍。我们表明,转录因子过表达会诱导异常高的转录率,并且在重编程的早期阶段维持高转录和转基因表达对于成功的谱系转化至关重要。然而,高转录会阻碍 DNA 复制和细胞增殖,而这些过程有利于重编程。我们发现一种化学和遗传鸡尾酒通过激活拓扑异构酶,可显著增加能够同时进行高转录和高增殖的细胞数量。此外,我们表明,高转录、高增殖的细胞以 100 倍更高的近确定性速率进行重编程。因此,缓解生物物理约束克服了细胞重编程的分子障碍。