Suppr超能文献

生物标志物检测在甲基组学中提高乳腺癌组织学分级识别能力的研究

BioDog, biomarker detection for improving identification power of breast cancer histologic grade in methylomics.

机构信息

College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, PR China.

College of Software, Jilin University, Changchun, Jilin 130012, PR China.

出版信息

Epigenomics. 2019 Nov 1;11(15):1717-1732. doi: 10.2217/epi-2019-0230. Epub 2019 Oct 18.

Abstract

Breast cancer histologic grade (HG) is a well-established prognostic factor. This study aimed to select methylomic biomarkers to predict breast cancer HGs. The proposed algorithm BioDog firstly used correlation bias reduction strategy to eliminate redundant features. Then incremental feature selection was applied to find the features with a high HG prediction accuracy. The sequential backward feature elimination strategy was employed to further refine the biomarkers. A comparison with existing algorithms were conducted. The HG-specific somatic mutations were investigated. BioDog achieved accuracy 0.9973 using 92 methylomic biomarkers for predicting breast cancer HGs. Many of these biomarkers were within the genes and lncRNAs associated with the HG development in breast cancer or other cancer types.

摘要

乳腺癌组织学分级(HG)是一个成熟的预后因素。本研究旨在选择甲基化组学生物标志物来预测乳腺癌 HG。所提出的算法 BioDog 首先使用相关性偏差减少策略来消除冗余特征。然后应用增量特征选择来找到具有高 HG 预测准确性的特征。采用顺序后向特征消除策略进一步优化生物标志物。与现有的算法进行了比较。研究了 HG 特异性体细胞突变。使用 92 个甲基化组学生物标志物,BioDog 实现了预测乳腺癌 HG 的准确性为 0.9973。其中许多生物标志物位于与乳腺癌或其他癌症类型 HG 发展相关的基因和 lncRNA 内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验