Suppr超能文献

单核细胞/高密度脂蛋白胆固醇比值作为经皮冠状动脉介入治疗的冠心病患者的长期预后标志物。

Monocyte to high-density lipoprotein cholesterol ratio as long-term prognostic marker in patients with coronary artery disease undergoing percutaneous coronary intervention.

机构信息

Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.

Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.

出版信息

Lipids Health Dis. 2019 Oct 22;18(1):180. doi: 10.1186/s12944-019-1116-2.

Abstract

BACKGROUND

The relation between monocyte to high-density lipoprotein cholesterol ratio (MHR) and coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI) remains controversial. The present study aims to assess the prognostic value of MHR in patients with CAD who underwent PCI.

METHODS

A total of 673 CAD patients were retrospectively enrolled and divided into four groups according to MHR values. Multivariate Cox regression analysis was performed to study the effects of different variables to clinical outcomes reported as major adverse cardiac events (MACE) and all-cause mortality (ACM).

RESULTS

In a multivariate Cox analysis, after adjustment of other confounders, MHR was found to be an independent predictor of ACM (HR: 3.655; 95% CI: 1.170-11.419, P = 0.026) and MACE (HR =2.390, 95% CI 1.379-4.143, p < 0.002). Having a MHR in the third and fourth quartile were associated with a 2.83-fold and 3.26 -flod increased risk of MACE.

CONCLUSIONS

MHR is an independent predictor of ACM and MACE in CAD patients undergoing PCI.

摘要

背景

单核细胞与高密度脂蛋白胆固醇比值(MHR)与经皮冠状动脉介入治疗(PCI)的冠心病(CAD)之间的关系仍存在争议。本研究旨在评估 MHR 在接受 PCI 的 CAD 患者中的预后价值。

方法

回顾性纳入 673 例 CAD 患者,并根据 MHR 值将其分为四组。采用多变量 Cox 回归分析研究不同变量对主要不良心脏事件(MACE)和全因死亡率(ACM)等临床结局的影响。

结果

在多变量 Cox 分析中,在调整其他混杂因素后,MHR 是 ACM(HR:3.655;95%CI:1.170-11.419,P=0.026)和 MACE(HR=2.390,95%CI 1.379-4.143,p<0.002)的独立预测因子。MHR 处于第三和第四四分位数与 MACE 的风险增加 2.83 倍和 3.26 倍相关。

结论

MHR 是接受 PCI 的 CAD 患者 ACM 和 MACE 的独立预测因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60ae/6805452/17cfa7aac3f4/12944_2019_1116_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验