Suppr超能文献

使用 CAT 和 BAT 对未知微生物序列和菌群进行稳健的分类学分类。

Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT.

机构信息

Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands.

Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands.

出版信息

Genome Biol. 2019 Oct 22;20(1):217. doi: 10.1186/s13059-019-1817-x.

Abstract

Current-day metagenomics analyses increasingly involve de novo taxonomic classification of long DNA sequences and metagenome-assembled genomes. Here, we show that the conventional best-hit approach often leads to classifications that are too specific, especially when the sequences represent novel deep lineages. We present a classification method that integrates multiple signals to classify sequences (Contig Annotation Tool, CAT) and metagenome-assembled genomes (Bin Annotation Tool, BAT). Classifications are automatically made at low taxonomic ranks if closely related organisms are present in the reference database and at higher ranks otherwise. The result is a high classification precision even for sequences from considerably unknown organisms.

摘要

目前的宏基因组分析越来越多地涉及到长 DNA 序列和宏基因组组装基因组的从头分类。在这里,我们表明,传统的最佳命中方法通常会导致过于具体的分类,特别是当这些序列代表新的深系时。我们提出了一种分类方法,该方法整合了多个信号来对序列(Contig Annotation Tool,CAT)和宏基因组组装基因组(Bin Annotation Tool,BAT)进行分类。如果参考数据库中存在密切相关的生物,则自动在低分类等级进行分类,否则在较高的分类等级进行分类。即使对于来自相当未知生物的序列,该方法也能获得很高的分类精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验