Suppr超能文献

启动子去甲基化是天冬酰胺合成酶基因依赖 ATF4 适应天冬酰胺耗竭所必需的。

Promoter demethylation of the asparagine synthetase gene is required for ATF4-dependent adaptation to asparagine depletion.

机构信息

Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202.

Morgridge Institute for Research and Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53715.

出版信息

J Biol Chem. 2019 Dec 6;294(49):18674-18684. doi: 10.1074/jbc.RA119.010447. Epub 2019 Oct 28.

Abstract

Tumor cells adapt to nutrient-limited environments by inducing gene expression that ensures adequate nutrients to sustain metabolic demands. For example, during amino acid limitations, ATF4 in the amino acid response induces expression of asparagine synthetase (ASNS), which provides for asparagine biosynthesis. Acute lymphoblastic leukemia (ALL) cells are sensitive to asparagine depletion, and administration of the asparagine depletion enzyme l-asparaginase is an important therapy option. ASNS expression can counterbalance l-asparaginase treatment by mitigating nutrient stress. Therefore, understanding the mechanisms regulating expression is important to define the adaptive processes underlying tumor progression and treatment. Here we show that DNA hypermethylation at the promoter prevents its transcriptional expression following asparagine depletion. Insufficient expression of leads to asparagine deficiency, which facilitates ATF4-independent induction of CCAAT-enhancer-binding protein homologous protein (CHOP), which triggers apoptosis. We conclude that chromatin accessibility is critical for ATF4 activity at the promoter, which can switch ALL cells from an ATF4-dependent adaptive response to ATF4-independent apoptosis during asparagine depletion. This work may also help explain why ALL cells are most sensitive to l-asparaginase treatment compared with other cancers.

摘要

肿瘤细胞通过诱导基因表达来适应营养有限的环境,以确保有足够的营养物质来维持代谢需求。例如,在氨基酸缺乏时,氨基酸反应中的 ATF4 诱导天冬酰胺合成酶(ASNS)的表达,从而提供天冬酰胺的生物合成。急性淋巴细胞白血病(ALL)细胞对天冬酰胺的消耗很敏感,而天冬酰胺消耗酶 l-天冬酰胺酶的给药是一种重要的治疗选择。ASNS 的表达可以通过减轻营养压力来抵消 l-天冬酰胺酶的治疗作用。因此,了解调节表达的机制对于确定肿瘤进展和治疗的适应性过程非常重要。在这里,我们表明,在天冬酰胺耗尽后, 启动子处的 DNA 超甲基化阻止其转录表达。 的表达不足导致天冬酰胺缺乏,这促进了 CCAAT 增强子结合蛋白同源蛋白(CHOP)的 ATF4 非依赖性诱导,从而引发细胞凋亡。我们得出结论,染色质可及性对于 ATF4 在 启动子上的活性至关重要,这可以使 ALL 细胞在天冬酰胺耗尽期间从 ATF4 依赖性适应性反应转变为 ATF4 非依赖性细胞凋亡。这项工作还可以帮助解释为什么 ALL 细胞比其他癌症对 l-天冬酰胺酶治疗最敏感。

相似文献

1
Promoter demethylation of the asparagine synthetase gene is required for ATF4-dependent adaptation to asparagine depletion.
J Biol Chem. 2019 Dec 6;294(49):18674-18684. doi: 10.1074/jbc.RA119.010447. Epub 2019 Oct 28.
5
Asparagine synthetase: regulation by cell stress and involvement in tumor biology.
Am J Physiol Endocrinol Metab. 2013 Apr 15;304(8):E789-99. doi: 10.1152/ajpendo.00015.2013. Epub 2013 Feb 12.
8
ZBTB1 Regulates Asparagine Synthesis and Leukemia Cell Response to L-Asparaginase.
Cell Metab. 2020 Apr 7;31(4):852-861.e6. doi: 10.1016/j.cmet.2020.03.008.
9
Targeting NAT10 inhibits osteosarcoma progression via ATF4/ASNS-mediated asparagine biosynthesis.
Cell Rep Med. 2024 Sep 17;5(9):101728. doi: 10.1016/j.xcrm.2024.101728.
10
Asparagine Dependency Is a Targetable Metabolic Vulnerability in TP53-Altered Castration-Resistant Prostate Cancer.
Cancer Res. 2024 Sep 16;84(18):3004-3022. doi: 10.1158/0008-5472.CAN-23-2910.

引用本文的文献

1
Targeting Asparagine Metabolism in Solid Tumors.
Nutrients. 2025 Jan 3;17(1):179. doi: 10.3390/nu17010179.
2
Emerging roles of small extracellular vesicles in metabolic reprogramming and drug resistance in cancers.
Cancer Drug Resist. 2024 Sep 27;7:38. doi: 10.20517/cdr.2024.81. eCollection 2024.
3
Molecular and cellular mechanisms of chemoresistance in paediatric pre-B cell acute lymphoblastic leukaemia.
Cancer Metastasis Rev. 2024 Dec;43(4):1385-1399. doi: 10.1007/s10555-024-10203-9. Epub 2024 Aug 5.
5
Enhancing Leukemia Treatment: The Role of Combined Therapies Based on Amino Acid Starvation.
Cancers (Basel). 2024 Mar 16;16(6):1171. doi: 10.3390/cancers16061171.
6
Metabolism of asparagine in the physiological state and cancer.
Cell Commun Signal. 2024 Mar 6;22(1):163. doi: 10.1186/s12964-024-01540-x.
8
Asparagine starvation suppresses histone demethylation through iron depletion.
iScience. 2023 Mar 16;26(4):106425. doi: 10.1016/j.isci.2023.106425. eCollection 2023 Apr 21.
9
Possible mechanism of metabolic and drug resistance with L-asparaginase therapy in childhood leukaemia.
Front Oncol. 2023 Feb 1;13:1070069. doi: 10.3389/fonc.2023.1070069. eCollection 2023.
10
Asparagine bioavailability regulates the translation of MYC oncogene.
Oncogene. 2022 Oct;41(44):4855-4865. doi: 10.1038/s41388-022-02474-9. Epub 2022 Oct 1.

本文引用的文献

1
Epigenetic Silencing Affects l-Asparaginase Sensitivity and Predicts Outcome in T-ALL.
Clin Cancer Res. 2019 Apr 15;25(8):2483-2493. doi: 10.1158/1078-0432.CCR-18-1844. Epub 2019 Jan 18.
2
Inhibition of GCN2 sensitizes ASNS-low cancer cells to asparaginase by disrupting the amino acid response.
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):E7776-E7785. doi: 10.1073/pnas.1805523115. Epub 2018 Jul 30.
3
Asparagine bioavailability governs metastasis in a model of breast cancer.
Nature. 2018 Feb 15;554(7692):378-381. doi: 10.1038/nature25465. Epub 2018 Feb 7.
4
As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid.
Cell Metab. 2018 Feb 6;27(2):428-438.e5. doi: 10.1016/j.cmet.2017.12.006. Epub 2018 Jan 11.
6
Asparagine synthetase: Function, structure, and role in disease.
J Biol Chem. 2017 Dec 8;292(49):19952-19958. doi: 10.1074/jbc.R117.819060. Epub 2017 Oct 30.
7
ATF4-Induced Metabolic Reprograming Is a Synthetic Vulnerability of the p62-Deficient Tumor Stroma.
Cell Metab. 2017 Dec 5;26(6):817-829.e6. doi: 10.1016/j.cmet.2017.09.001. Epub 2017 Oct 5.
8
Surviving Stress: Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells.
Trends Endocrinol Metab. 2017 Nov;28(11):794-806. doi: 10.1016/j.tem.2017.07.003. Epub 2017 Aug 7.
9
Understanding the Intersections between Metabolism and Cancer Biology.
Cell. 2017 Feb 9;168(4):657-669. doi: 10.1016/j.cell.2016.12.039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验