Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan.
Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan.
Environ Pollut. 2020 Jan;256:113382. doi: 10.1016/j.envpol.2019.113382. Epub 2019 Oct 16.
The widespread use of zinc oxide nanoparticles (ZnO-NPs) has led to their release into the environment, and they thus represent a potential risk for both humans and ecosystems. However, the negative impact of ZnO-NPs on the immune system, especially in relation to host defense against pathogenic infection and its underlying regulatory mechanisms, remains largely unexplored. This study investigated the effects of early-life long-term ZnO-NPs exposure (from L1 larvae to adults) on innate immunity and its underlying mechanisms using a host-pathogen Caenorhabditis elegans model, and this was compared with the effect of ionic Zn. The results showed that the ZnO-NPs taken up by C. elegans primarily accumulated in the intestine and that early-life long-term ZnO-NPs exposure at environmentally relevant concentrations (50 and 500 μg/L) decreased the survival of wild-type C. elegans when faced with pathogenic Pseudomonas aeruginosa PA14 infection. Early-life long-term ZnO-NPs (500 μg/L) exposure significantly increased (by about 3-fold) the accumulation of live P. aeruginosa PA14 colonies in the intestine of C. elegans. In addition, ZnO-NPs (500 μg/L) inhibited the intestinal nuclear translocation of SKN-1 and also downregulated gcs-1 gene expression, which is an SKN-1 target gene. Further evidence revealed that early-life long-term exposure to ZnO-NPs (500 μg/L) did not increase susceptibility to mutation among the genes (pmk-1, sek-1, and nsy-1) encoding the p38 mitogen-activated protein kinase (MAPK) cascade in response to P. aeruginosa PA14 infection, though ZnO-NPs significantly decreased the mRNA levels of pmk-1, sek-1, and nsy-1. This study provides regulatory insight based on evidence that ZnO-NPs suppress the innate immunity of C. elegans and highlights the potential health risks of certain environmental nanomaterials, including ZnO-NPs, in terms of their immunotoxicity at environmentally relevant concentrations.
氧化锌纳米粒子(ZnO-NPs)的广泛应用导致其释放到环境中,因此对人类和生态系统都构成了潜在风险。然而,ZnO-NPs 对免疫系统的负面影响,特别是在宿主防御致病感染及其潜在的调节机制方面,仍然很大程度上未被探索。本研究使用宿主-病原体秀丽隐杆线虫模型,研究了早期生活中长期 ZnO-NPs 暴露(从 L1 幼虫到成虫)对先天免疫及其潜在机制的影响,并将其与离子 Zn 的影响进行了比较。结果表明,秀丽隐杆线虫摄取的 ZnO-NPs 主要积聚在肠道中,早期生活中长期暴露于环境相关浓度(50 和 500μg/L)的 ZnO-NPs 会降低野生型秀丽隐杆线虫在受到致病铜绿假单胞菌 PA14 感染时的存活率。早期生活中长期暴露于 ZnO-NPs(500μg/L)显著增加(约 3 倍)了铜绿假单胞菌 PA14 活菌落在秀丽隐杆线虫肠道中的积累。此外,ZnO-NPs(500μg/L)抑制了 SKN-1 的核易位,并下调了 gcs-1 基因表达,这是 SKN-1 的靶基因。进一步的证据表明,早期生活中长期暴露于 ZnO-NPs(500μg/L)不会增加秀丽隐杆线虫对编码 p38 丝裂原激活蛋白激酶(MAPK)级联反应的基因(pmk-1、sek-1 和 nsy-1)的突变易感性,尽管 ZnO-NPs 显著降低了 pmk-1、sek-1 和 nsy-1 的 mRNA 水平。本研究提供了基于证据的监管见解,表明 ZnO-NPs 抑制了秀丽隐杆线虫的先天免疫,并强调了某些环境纳米材料(包括 ZnO-NPs)在环境相关浓度下的免疫毒性方面的潜在健康风险。