Suppr超能文献

可离子化脂质纳米颗粒包封条码化 mRNA 用于加速体内递药筛选

Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States; Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

J Control Release. 2019 Dec 28;316:404-417. doi: 10.1016/j.jconrel.2019.10.028. Epub 2019 Oct 31.

Abstract

Messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapy, with the potential to induce protein production to treat and prevent a range of diseases. However, the widespread use of mRNA as a therapeutic requires safe and effective in vivo delivery technologies. Libraries of ionizable lipid nanoparticles (LNPs) have been designed to encapsulate mRNA, prevent its degradation, and mediate intracellular delivery. However, these LNPs are typically characterized and screened in an in vitro setting, which may not fully replicate the biological barriers that they encounter in vivo. Here, we designed and evaluated a library of engineered LNPs containing barcoded mRNA (b-mRNA) to accelerate the screening of mRNA delivery platforms in vivo. These b-mRNA are similar in structure and function to regular mRNA, and contain barcodes that enable their delivery to be quantified via deep sequencing. Using a mini-library of b-mRNA LNPs formulated via microfluidic mixing, we show that these different formulations can be pooled together, administered intravenously into mice as a single pool, and their delivery to multiple organs (liver, spleen, brain, lung, heart, kidney, pancreas, and muscle) can be quantified simultaneously using deep sequencing. In the context of liver and spleen delivery, LNPs that exhibited high b-mRNA delivery also yielded high luciferase expression, indicating that this platform can identify lead LNP candidates as well as optimal formulation parameters for in vivo mRNA delivery. Interestingly, LNPs with identical formulation parameters that encapsulated different types of nucleic acid barcodes (b-mRNA versus a DNA barcode) altered in vivo delivery, suggesting that the structure of the barcoded nucleic acid affects LNP in vivo delivery. This platform, which enables direct barcoding and subsequent quantification of a functional mRNA, can accelerate the in vivo screening and design of LNPs for mRNA therapeutic applications such as CRISPR-Cas9 gene editing, mRNA vaccination, and other mRNA-based regenerative medicine and protein replacement therapies.

摘要

信使 RNA(mRNA)最近成为一种很有前途的核酸治疗药物,可以诱导蛋白质产生,从而治疗和预防一系列疾病。然而,mRNA 作为一种治疗药物的广泛应用需要安全有效的体内递送技术。可电离脂质纳米粒(LNPs)库已被设计用于包裹 mRNA,防止其降解,并介导细胞内递送。然而,这些 LNPs 通常在体外进行表征和筛选,这可能无法完全复制它们在体内遇到的生物学障碍。在这里,我们设计并评估了一个包含编码 mRNA(b-mRNA)的工程化 LNPs 文库,以加速体内 mRNA 递送平台的筛选。这些 b-mRNA 在结构和功能上与常规 mRNA 相似,并且包含条形码,可通过深度测序对其递送进行定量。使用通过微流控混合形成的 b-mRNA LNPs 的微型文库,我们表明可以将这些不同的配方混合在一起,作为单一混合物静脉内给药给小鼠,并使用深度测序同时定量它们在多个器官(肝脏、脾脏、大脑、肺、心脏、肾脏、胰腺和肌肉)中的递送。在肝脏和脾脏递送的情况下,表现出高 b-mRNA 递送的 LNPs 也产生了高荧光素酶表达,表明该平台可以识别 LNP 候选物以及用于体内 mRNA 递送的最佳配方参数。有趣的是,封装不同类型的核酸条形码(b-mRNA 与 DNA 条形码)的 LNPs 具有相同的配方参数,改变了体内递送,表明条形码核酸的结构会影响 LNP 在体内的递送。该平台可直接对功能性 mRNA 进行条形码标记,并随后进行定量,可加速 CRISPR-Cas9 基因编辑、mRNA 疫苗接种和其他基于 mRNA 的再生医学和蛋白质替代疗法等 mRNA 治疗应用的体内筛选和 LNPs 设计。

相似文献

1
Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening.
J Control Release. 2019 Dec 28;316:404-417. doi: 10.1016/j.jconrel.2019.10.028. Epub 2019 Oct 31.
2
Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver.
Biomater Sci. 2021 Feb 21;9(4):1449-1463. doi: 10.1039/d0bm01609h. Epub 2021 Jan 6.
3
Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing.
Acc Chem Res. 2021 Nov 2;54(21):4001-4011. doi: 10.1021/acs.accounts.1c00500. Epub 2021 Oct 20.
4
Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: Advances in genome editing and CAR T cell therapy.
J Control Release. 2024 Aug;372:113-140. doi: 10.1016/j.jconrel.2024.06.023. Epub 2024 Jun 15.
6
Bile acid-containing lipid nanoparticles enhance extrahepatic mRNA delivery.
Theranostics. 2024 Jan 1;14(1):1-16. doi: 10.7150/thno.89913. eCollection 2024.
7
High-Throughput Screening Identifies Differential Influences on mRNA Lipid Nanoparticle Immune Cell Delivery by Administration Route.
ACS Nano. 2024 Jun 25;18(25):16151-16165. doi: 10.1021/acsnano.4c01171. Epub 2024 Jun 11.
8
Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA.
Nano Lett. 2018 Jun 13;18(6):3814-3822. doi: 10.1021/acs.nanolett.8b01101. Epub 2018 May 8.
10
A Direct Comparison of in Vitro and in Vivo Nucleic Acid Delivery Mediated by Hundreds of Nanoparticles Reveals a Weak Correlation.
Nano Lett. 2018 Mar 14;18(3):2148-2157. doi: 10.1021/acs.nanolett.8b00432. Epub 2018 Mar 5.

引用本文的文献

1
Designing lipid nanoparticles using a transformer-based neural network.
Nat Nanotechnol. 2025 Aug 15. doi: 10.1038/s41565-025-01975-4.
2
Mind the Age Gap: Expanding the Age Window for mRNA Vaccine Testing in Mice.
Vaccines (Basel). 2025 Mar 30;13(4):370. doi: 10.3390/vaccines13040370.
3
Engineering Lipid Nanoparticles for mRNA Immunotherapy.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Mar-Apr;17(2):e70007. doi: 10.1002/wnan.70007.
4
Investigation of the impact of lipid nanoparticle compositions on the delivery and T cell response of circRNA vaccine.
J Control Release. 2025 May 10;381:113617. doi: 10.1016/j.jconrel.2025.113617. Epub 2025 Mar 17.
5
mRNA lipid nanoparticle formulation, characterization and evaluation.
Nat Protoc. 2025 Mar 11. doi: 10.1038/s41596-024-01134-4.
6
A Reverse Transcription Nucleic-Acid-Based Barcoding System for Measurement of Lipid Nanoparticle mRNA Delivery.
ACS Bio Med Chem Au. 2025 Feb 5;5(1):35-41. doi: 10.1021/acsbiomedchemau.4c00081. eCollection 2025 Feb 19.
7
Digital Barcodes for High-Throughput Screening.
Chem Bio Eng. 2024 Jan 26;1(1):2-12. doi: 10.1021/cbe.3c00085. eCollection 2024 Feb 22.
8
Delivery of genetic medicines for muscular dystrophies.
Cell Rep Med. 2025 Jan 21;6(1):101885. doi: 10.1016/j.xcrm.2024.101885. Epub 2025 Jan 6.
10
Loading of Extracellular Vesicles with Nucleic Acids via Hybridization with Non-Lamellar Liquid Crystalline Lipid Nanoparticles.
Adv Sci (Weinh). 2025 Feb;12(8):e2404860. doi: 10.1002/advs.202404860. Epub 2024 Dec 31.

本文引用的文献

1
Endocytic Profiling of Cancer Cell Models Reveals Critical Factors Influencing LNP-Mediated mRNA Delivery and Protein Expression.
Mol Ther. 2019 Nov 6;27(11):1950-1962. doi: 10.1016/j.ymthe.2019.07.018. Epub 2019 Aug 5.
2
Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy.
Cancer Lett. 2019 Aug 28;458:102-112. doi: 10.1016/j.canlet.2019.04.040. Epub 2019 May 14.
3
Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery.
Mol Ther. 2019 Apr 10;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012. Epub 2019 Feb 19.
4
Nanoparticles Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at Clinically Relevant Doses.
Adv Mater. 2019 Apr;31(14):e1807748. doi: 10.1002/adma.201807748. Epub 2019 Feb 12.
5
Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH.
Small. 2019 Feb;15(6):e1805097. doi: 10.1002/smll.201805097. Epub 2019 Jan 13.
6
Delivery technologies for cancer immunotherapy.
Nat Rev Drug Discov. 2019 Mar;18(3):175-196. doi: 10.1038/s41573-018-0006-z.
7
Nanoparticles That Deliver RNA to Bone Marrow Identified by in Vivo Directed Evolution.
J Am Chem Soc. 2018 Dec 12;140(49):17095-17105. doi: 10.1021/jacs.8b08976. Epub 2018 Nov 16.
9
Biomaterials for vaccine-based cancer immunotherapy.
J Control Release. 2018 Dec 28;292:256-276. doi: 10.1016/j.jconrel.2018.10.008. Epub 2018 Oct 9.
10
Therapeutic Oligonucleotides: State of the Art.
Annu Rev Pharmacol Toxicol. 2019 Jan 6;59:605-630. doi: 10.1146/annurev-pharmtox-010818-021050. Epub 2018 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验