Suppr超能文献

多发性硬化症:褪黑素、食欲素和神经酰胺与血小板激活凝血因子相互作用,并与肠道微生物群衍生的丁酸盐在神经胶质细胞和免疫细胞中线粒体的昼夜节律失调中相互作用。

Multiple Sclerosis: Melatonin, Orexin, and Ceramide Interact with Platelet Activation Coagulation Factors and Gut-Microbiome-Derived Butyrate in the Circadian Dysregulation of Mitochondria in Glia and Immune Cells.

机构信息

CRC Scotland & London, London E16 6JE, UK.

Departments of Neurology & Immunology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.

出版信息

Int J Mol Sci. 2019 Nov 5;20(21):5500. doi: 10.3390/ijms20215500.

Abstract

Recent data highlight the important roles of the gut microbiome, gut permeability, and alterations in mitochondria functioning in the pathophysiology of multiple sclerosis (MS). This article reviews such data, indicating two important aspects of alterations in the gut in the modulation of mitochondria: (1) Gut permeability increases toll-like receptor (TLR) activators, viz circulating lipopolysaccharide (LPS), and exosomal high-mobility group box (HMGB)1. LPS and HMGB1 increase inducible nitric oxide synthase and superoxide, leading to peroxynitrite-driven acidic sphingomyelinase and ceramide. Ceramide is a major driver of MS pathophysiology via its impacts on glia mitochondria functioning; (2) Gut dysbiosis lowers production of the short-chain fatty acid, butyrate. Butyrate is a significant positive regulator of mitochondrial function, as well as suppressing the levels and effects of ceramide. Ceramide acts to suppress the circadian optimizers of mitochondria functioning, viz daytime orexin and night-time melatonin. Orexin, melatonin, and butyrate increase mitochondria oxidative phosphorylation partly via the disinhibition of the pyruvate dehydrogenase complex, leading to an increase in acetyl-coenzyme A (CoA). Acetyl-CoA is a necessary co-substrate for activation of the mitochondria melatonergic pathway, allowing melatonin to optimize mitochondrial function. Data would indicate that gut-driven alterations in ceramide and mitochondrial function, particularly in glia and immune cells, underpin MS pathophysiology. Aryl hydrocarbon receptor (AhR) activators, such as stress-induced kynurenine and air pollutants, may interact with the mitochondrial melatonergic pathway via AhR-induced cytochrome P450 (CYP)1b1, which backward converts melatonin to N-acetylserotonin (NAS). The loss of mitochnodria melatonin coupled with increased NAS has implications for altered mitochondrial function in many cell types that are relevant to MS pathophysiology. NAS is increased in secondary progressive MS, indicating a role for changes in the mitochondria melatonergic pathway in the progression of MS symptomatology. This provides a framework for the integration of diverse bodies of data on MS pathophysiology, with a number of readily applicable treatment interventions, including the utilization of sodium butyrate.

摘要

最近的数据强调了肠道微生物组、肠道通透性和线粒体功能改变在多发性硬化症 (MS) 病理生理学中的重要作用。本文综述了这些数据,指出了肠道改变在调节线粒体方面的两个重要方面:(1) 肠道通透性增加 Toll 样受体 (TLR) 激活剂,即循环脂多糖 (LPS) 和外泌体高迁移率族蛋白 (HMGB)1。LPS 和 HMGB1 增加诱导型一氧化氮合酶和超氧化物,导致过氧亚硝酸盐驱动的酸性神经鞘磷脂酶和神经酰胺。神经酰胺通过其对神经胶质线粒体功能的影响,是 MS 病理生理学的主要驱动因素;(2) 肠道菌群失调降低短链脂肪酸丁酸盐的产生。丁酸盐是线粒体功能的重要正调节剂,同时抑制神经酰胺的水平和作用。神经酰胺作用于抑制线粒体功能的昼夜节律优化剂,即白天食欲素和夜间褪黑素。食欲素、褪黑素和丁酸盐部分通过抑制丙酮酸脱氢酶复合物增加线粒体氧化磷酸化,导致乙酰辅酶 A (CoA) 增加。乙酰-CoA 是激活线粒体褪黑素途径的必要共底物,使褪黑素能够优化线粒体功能。数据表明,肠道驱动的神经酰胺和线粒体功能改变,特别是在神经胶质细胞和免疫细胞中,是 MS 病理生理学的基础。芳香烃受体 (AhR) 激活剂,如应激诱导的犬尿氨酸和空气污染物,可能通过 AhR 诱导的细胞色素 P450 (CYP)1b1 与线粒体褪黑素途径相互作用,CYP1b1 将褪黑素反向转化为 N-乙酰血清素 (NAS)。线粒体褪黑素的丧失伴随着 NAS 的增加,这对与 MS 病理生理学相关的许多细胞类型的线粒体功能改变有影响。继发性进展性 MS 中 NAS 增加,表明线粒体褪黑素途径的改变在 MS 症状进展中起作用。这为整合多发性硬化症病理生理学的多种数据提供了一个框架,并提出了一些易于应用的治疗干预措施,包括利用丁酸钠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e41/6862663/c22bae30b0f8/ijms-20-05500-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验