Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Cell Mol Life Sci. 2020 Jan;77(1):61-79. doi: 10.1007/s00018-019-03369-x. Epub 2019 Nov 14.
Telomeres are protein-DNA complexes that protect chromosome ends from illicit ligation and resection. Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA to counter telomere shortening. Human telomeres are composed of complexes between telomeric DNA and a six-protein complex known as shelterin. The shelterin proteins TRF1 and TRF2 provide the binding affinity and specificity for double-stranded telomeric DNA, while the POT1-TPP1 shelterin subcomplex coats the single-stranded telomeric G-rich overhang that is characteristic of all our chromosome ends. By capping chromosome ends, shelterin protects telomeric DNA from unwanted degradation and end-to-end fusion events. Structures of the human shelterin proteins reveal a network of constitutive and context-specific interactions. The shelterin protein-DNA structures reveal the basis for both the high affinity and DNA sequence specificity of these interactions, and explain how shelterin efficiently protects chromosome ends from genome instability. Several protein-protein interactions, many provided by the shelterin component TIN2, are critical for upholding the end-protection function of shelterin. A survey of these protein-protein interfaces within shelterin reveals a series of "domain-peptide" interactions that allow for efficient binding and adaptability towards new functions. While the modular nature of shelterin has facilitated its part-by-part structural characterization, the interdependence of subunits within telomerase has made its structural solution more challenging. However, the exploitation of several homologs in combination with recent advancements in cryo-EM capabilities has led to an exponential increase in our knowledge of the structural biology underlying telomerase function. Telomerase homologs from a wide range of eukaryotes show a typical retroviral reverse transcriptase-like protein core reinforced with elements that deliver telomerase-specific functions including recruitment to telomeres and high telomere-repeat addition processivity. In addition to providing the template for reverse transcription, the RNA component of telomerase provides a scaffold for the catalytic and accessory protein subunits, defines the limits of the telomeric repeat sequence, and plays a critical role in RNP assembly, stability, and trafficking. While a high-resolution definition of the human telomerase structure is only beginning to emerge, the quick pace of technical progress forecasts imminent breakthroughs in this area. Here, we review the structural biology surrounding telomeres and telomerase to provide a molecular description of mammalian chromosome end protection and end replication.
端粒是一种保护染色体末端免受非法连接和切除的蛋白质-DNA 复合物。端粒酶是一种核糖核蛋白酶,它合成端粒 DNA 以对抗端粒缩短。人类端粒由端粒 DNA 与一种六蛋白复合物(称为 shelterin)之间的复合物组成。shelterin 蛋白 TRF1 和 TRF2 为双链端粒 DNA 提供结合亲和力和特异性,而 POT1-TPP1 shelterin 亚复合物则覆盖所有染色体末端特征性的单链富含 G 的端粒突出端。通过覆盖染色体末端,shelterin 保护端粒 DNA 免受不必要的降解和端到端融合事件的影响。人类 shelterin 蛋白结构揭示了一个组成型和上下文特异性相互作用的网络。shelterin 蛋白-DNA 结构揭示了这些相互作用高亲和力和 DNA 序列特异性的基础,并解释了 shelterin 如何有效地保护染色体末端免受基因组不稳定性的影响。几种蛋白质-蛋白质相互作用,其中许多由 shelterin 成分 TIN2 提供,对于维持 shelterin 的末端保护功能至关重要。对 shelterin 内这些蛋白质-蛋白质界面的调查揭示了一系列“结构域-肽”相互作用,这些相互作用允许高效结合并适应新功能。虽然 shelterin 的模块化性质促进了其部分结构特征的描述,但端粒酶亚基之间的相互依赖性使得其结构解决方案更具挑战性。然而,利用几种同源物并结合最近 cryo-EM 能力的进步,导致了我们对端粒酶功能基础的结构生物学的认识呈指数级增长。来自广泛真核生物的端粒酶同源物显示出典型的逆转录病毒逆转录酶样蛋白核心,辅以赋予端粒酶特异性功能的元件,包括招募到端粒和高端粒重复添加过程性。除了提供逆转录的模板外,端粒酶的 RNA 成分还为催化和辅助蛋白亚基提供了支架,定义了端粒重复序列的限制,并在 RNP 组装、稳定性和运输中发挥关键作用。虽然人类端粒酶结构的高分辨率定义才刚刚开始出现,但技术进步的快速步伐预示着该领域即将取得突破。在这里,我们回顾了端粒和端粒酶周围的结构生物学,以提供哺乳动物染色体末端保护和末端复制的分子描述。