Suppr超能文献

贝叶斯收缩估计在组学研究中高维因果中介效应。

Bayesian shrinkage estimation of high dimensional causal mediation effects in omics studies.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.

Department of Epidemiology, University of Michigan, Ann Arbor, Michigan.

出版信息

Biometrics. 2020 Sep;76(3):700-710. doi: 10.1111/biom.13189. Epub 2019 Dec 19.

Abstract

Causal mediation analysis aims to examine the role of a mediator or a group of mediators that lie in the pathway between an exposure and an outcome. Recent biomedical studies often involve a large number of potential mediators based on high-throughput technologies. Most of the current analytic methods focus on settings with one or a moderate number of potential mediators. With the expanding growth of -omics data, joint analysis of molecular-level genomics data with epidemiological data through mediation analysis is becoming more common. However, such joint analysis requires methods that can simultaneously accommodate high-dimensional mediators and that are currently lacking. To address this problem, we develop a Bayesian inference method using continuous shrinkage priors to extend previous causal mediation analysis techniques to a high-dimensional setting. Simulations demonstrate that our method improves the power of global mediation analysis compared to simpler alternatives and has decent performance to identify true nonnull contributions to the mediation effects of the pathway. The Bayesian method also helps us to understand the structure of the composite null cases for inactive mediators in the pathway. We applied our method to Multi-Ethnic Study of Atherosclerosis and identified DNA methylation regions that may actively mediate the effect of socioeconomic status on cardiometabolic outcomes.

摘要

因果中介分析旨在研究暴露与结果之间路径上的中介或一组中介的作用。最近的生物医学研究经常基于高通量技术涉及大量潜在的中介。目前大多数分析方法都集中在一个或中等数量潜在中介的环境中。随着组学数据的不断扩展,通过中介分析将分子水平基因组学数据与流行病学数据联合分析变得越来越普遍。然而,这种联合分析需要能够同时容纳高维中介的方法,而目前还缺乏这种方法。为了解决这个问题,我们开发了一种使用连续收缩先验的贝叶斯推断方法,将先前的因果中介分析技术扩展到高维环境。模拟表明,与更简单的替代方法相比,我们的方法提高了全局中介分析的功效,并且具有识别途径中介效应的真实非零贡献的良好性能。贝叶斯方法还有助于我们了解途径中无效中介的复合零情况的结构。我们将我们的方法应用于动脉粥样硬化多民族研究,并确定了可能积极介导社会经济地位对心血管代谢结果影响的 DNA 甲基化区域。

相似文献

1
Bayesian shrinkage estimation of high dimensional causal mediation effects in omics studies.
Biometrics. 2020 Sep;76(3):700-710. doi: 10.1111/biom.13189. Epub 2019 Dec 19.
2
Bayesian hierarchical models for high-dimensional mediation analysis with coordinated selection of correlated mediators.
Stat Med. 2021 Nov 30;40(27):6038-6056. doi: 10.1002/sim.9168. Epub 2021 Aug 17.
3
Methods for mediation analysis with high-dimensional DNA methylation data: Possible choices and comparisons.
PLoS Genet. 2023 Nov 7;19(11):e1011022. doi: 10.1371/journal.pgen.1011022. eCollection 2023 Nov.
4
Bayesian Sparse Mediation Analysis with Targeted Penalization of Natural Indirect Effects.
J R Stat Soc Ser C Appl Stat. 2021 Nov;70(5):1391-1412. doi: 10.1111/rssc.12518. Epub 2021 Sep 12.
5
Causal mediation analysis in presence of multiple mediators uncausally related.
Int J Biostat. 2020 Sep 30;17(2):191-221. doi: 10.1515/ijb-2019-0088.
6
A Bayesian high-dimensional mediation analysis for multilevel genome-wide epigenetic data.
J Appl Stat. 2024 Jun 16;52(2):287-305. doi: 10.1080/02664763.2024.2367148. eCollection 2025.
7
Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators.
Biometrics. 2016 Jun;72(2):402-13. doi: 10.1111/biom.12421. Epub 2015 Sep 28.
9
Nonlinear mediation analysis with high-dimensional mediators whose causal structure is unknown.
Biometrics. 2022 Mar;78(1):46-59. doi: 10.1111/biom.13402. Epub 2020 Dec 7.
10
Statistical methods for mediation analysis in the era of high-throughput genomics: Current successes and future challenges.
Comput Struct Biotechnol J. 2021 May 26;19:3209-3224. doi: 10.1016/j.csbj.2021.05.042. eCollection 2021.

引用本文的文献

1
Causal mediation analysis: selection with asymptotically valid inference.
J R Stat Soc Series B Stat Methodol. 2024 Nov 28;87(3):678-700. doi: 10.1093/jrsssb/qkae109. eCollection 2025 Jul.
2
The Chemical Exposome on Ovarian Aging in Adult Women: a Narrative Review.
Curr Pollut Rep. 2025 Dec;11(1). doi: 10.1007/s40726-025-00341-1. Epub 2025 Feb 19.
3
Debiased machine learning for ultra-high dimensional mediation analysis.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf282.
4
Time-varying mediation analysis for incomplete data with application to DNA methylation study for PTSD.
bioRxiv. 2025 Mar 12:2024.02.06.579228. doi: 10.1101/2024.02.06.579228.
7
A Bayesian high-dimensional mediation analysis for multilevel genome-wide epigenetic data.
J Appl Stat. 2024 Jun 16;52(2):287-305. doi: 10.1080/02664763.2024.2367148. eCollection 2025.
9
FABIO: TWAS fine-mapping to prioritize causal genes for binary traits.
PLoS Genet. 2024 Dec 2;20(12):e1011503. doi: 10.1371/journal.pgen.1011503. eCollection 2024 Dec.
10
Bayesian pathway analysis over brain network mediators for survival data.
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae132.

本文引用的文献

2
Polygenic prediction via Bayesian regression and continuous shrinkage priors.
Nat Commun. 2019 Apr 16;10(1):1776. doi: 10.1038/s41467-019-09718-5.
3
High dimensional mediation analysis with latent variables.
Biometrics. 2019 Sep;75(3):745-756. doi: 10.1111/biom.13053. Epub 2019 May 5.
5
High-dimensional multivariate mediation with application to neuroimaging data.
Biostatistics. 2018 Apr 1;19(2):121-136. doi: 10.1093/biostatistics/kxx027.
6
An Expanded View of Complex Traits: From Polygenic to Omnigenic.
Cell. 2017 Jun 15;169(7):1177-1186. doi: 10.1016/j.cell.2017.05.038.
7
A framework for Bayesian nonparametric inference for causal effects of mediation.
Biometrics. 2017 Jun;73(2):401-409. doi: 10.1111/biom.12575. Epub 2016 Aug 1.
9
Mediation Analysis: A Practitioner's Guide.
Annu Rev Public Health. 2016;37:17-32. doi: 10.1146/annurev-publhealth-032315-021402. Epub 2015 Nov 30.
10
Causal mediation analysis with multiple causally non-ordered mediators.
Stat Methods Med Res. 2018 Jan;27(1):3-19. doi: 10.1177/0962280215615899. Epub 2015 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验