Suppr超能文献

HNF4 调节脂肪酸氧化,是维持小鼠肠道干细胞更新所必需的。

HNF4 Regulates Fatty Acid Oxidation and Is Required for Renewal of Intestinal Stem Cells in Mice.

机构信息

Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.

Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey.

出版信息

Gastroenterology. 2020 Mar;158(4):985-999.e9. doi: 10.1053/j.gastro.2019.11.031. Epub 2019 Nov 22.

Abstract

BACKGROUND & AIMS: Functions of intestinal stem cells (ISCs) are regulated by diet and metabolic pathways. Hepatocyte nuclear factor 4 (HNF4) family are transcription factors that bind fatty acids. We investigated how HNF4 transcription factors regulate metabolism and their functions in ISCs in mice.

METHODS

We performed studies with Villin-Cre;Lgr5-EGFP-IRES-Cre;Hnf4α;Hnf4γ mice, hereafter referred to Hnf4αγ. Mice were given tamoxifen to induce Cre recombinase. Mice transgenic with only Cre alleles (Villin-Cre, Lgr5-EGFP-IRES-Cre, Hnf4α, and Hnf4γ) or mice given vehicle were used as controls. Crypt and villus cells were isolated, incubated with fluorescently labeled fatty acids or glucose analog, and analyzed by confocal microscopy. Fatty acid oxidation activity and tricarboxylic acid (TCA) cycle metabolites were measured in cells collected from the proximal half of the small intestine of Hnf4αγ and control mice. We performed chromatin immunoprecipitation and gene expression profiling analyses to identify genes regulated by HNF4 factors. We established organoids from duodenal crypts, incubated them with labeled palmitate or acetate, and measured production of TCA cycle metabolites or fatty acids. Acetate, a precursor of acetyl coenzyme A (CoA) (a product of fatty acid β-oxidation [FAO]), or dichloroacetate, a compound that promotes pyruvate oxidation and generation of mitochondrial acetyl-CoA, were used for metabolic intervention.

RESULTS

Crypt cells rapidly absorbed labeled fatty acids, and messenger RNA levels of Lgr5 stem cell markers (Lgr5, Olfm4, Smoc2, Msi1, and Ascl2) were down-regulated in organoids incubated with etomoxir, an inhibitor of FAO, indicating that FAO was required for renewal of ISCs. HNF4A and HNF4G were expressed in ISCs and throughout the intestinal epithelium. Single knockout of either HNF4A or HNF4G did not affect maintenance of ISCs, but double-knockout of HNF4A and HNF4G resulted in ISC loss; stem cells failed to renew. FAO supports ISC renewal, and HNF4 transcription factors directly activate FAO genes, including Acsl5 and Acsf2 (encode regulators of acyl-CoA synthesis), Slc27a2 (encodes a fatty acid transporter), Fabp2 (encodes fatty acid binding protein), and Hadh (encodes hydroxyacyl-CoA dehydrogenase). In the intestinal epithelium of Hnf4αγ mice, expression levels of FAO genes, FAO activity, and metabolites of TCA cycle were all significantly decreased, but fatty acid synthesis transcripts were increased, compared with control mice. The contribution of labeled palmitate or acetate to the TCA cycle was reduced in organoids derived from Hnf4αγ mice, compared with control mice. Incubation of organoids derived from double-knockout mice with acetate or dichloroacetate restored stem cells.

CONCLUSIONS

In mice, the transcription factors HNF4A and HNF4G regulate the expression of genes required for FAO and are required for renewal of ISCs.

摘要

背景与目的

肠干细胞(ISCs)的功能受饮食和代谢途径的调节。肝细胞核因子 4(HNF4)家族是与脂肪酸结合的转录因子。我们研究了 HNF4 转录因子如何调节代谢及其在小鼠 ISCs 中的功能。

方法

我们使用 Villin-Cre;Lgr5-EGFP-IRES-Cre;Hnf4α;Hnf4γ 小鼠(以下简称 Hnf4αγ)进行了研究。给予他莫昔芬以诱导 Cre 重组酶。使用仅携带 Cre 等位基因(Villin-Cre、Lgr5-EGFP-IRES-Cre、Hnf4α 和 Hnf4γ)的转基因小鼠或给予载体的小鼠作为对照。分离隐窝和绒毛细胞,用荧光标记的脂肪酸或葡萄糖类似物孵育,并通过共聚焦显微镜进行分析。测量 Hnf4αγ 和对照小鼠近端小肠细胞中的脂肪酸氧化活性和三羧酸(TCA)循环代谢物。我们进行了染色质免疫沉淀和基因表达谱分析,以鉴定受 HNF4 因子调节的基因。我们从十二指肠隐窝建立了类器官,用标记的棕榈酸或醋酸盐孵育,并测量 TCA 循环代谢物或脂肪酸的产生。醋酸盐是乙酰辅酶 A(CoA)的前体(脂肪酸 β-氧化[FAO]的产物),或二氯乙酸盐,一种促进丙酮酸氧化和生成线粒体乙酰 CoA 的化合物,用于代谢干预。

结果

隐窝细胞迅速吸收标记的脂肪酸,用 etomoxir(FAO 的抑制剂)孵育的类器官中 Lgr5 干细胞标志物(Lgr5、Olfm4、Smoc2、Msi1 和 Ascl2)的信使 RNA 水平下调,表明 FAO 是 ISC 更新所必需的。HNF4A 和 HNF4G 在 ISCs 和整个肠上皮中表达。单独敲除 HNF4A 或 HNF4G 不会影响 ISC 的维持,但双敲除 HNF4A 和 HNF4G 会导致 ISC 丢失;干细胞无法更新。FAO 支持 ISC 更新,HNF4 转录因子直接激活 FAO 基因,包括 Acsl5 和 Acsf2(编码酰基辅酶 A 合成调节剂)、Slc27a2(编码脂肪酸转运蛋白)、Fabp2(编码脂肪酸结合蛋白)和 Hadh(编码羟基酰基辅酶 A 脱氢酶)。与对照小鼠相比,Hnf4αγ 小鼠的肠上皮中 FAO 基因的表达水平、FAO 活性和 TCA 循环代谢物均显著降低,但脂肪酸合成转录本增加。与对照小鼠相比,源自 Hnf4αγ 小鼠的类器官中标记的棕榈酸或醋酸盐对 TCA 循环的贡献减少。用醋酸盐或二氯乙酸盐孵育源自双敲除小鼠的类器官可恢复干细胞。

结论

在小鼠中,转录因子 HNF4A 和 HNF4G 调节 FAO 所需基因的表达,是 ISC 更新所必需的。

相似文献

1
HNF4 Regulates Fatty Acid Oxidation and Is Required for Renewal of Intestinal Stem Cells in Mice.
Gastroenterology. 2020 Mar;158(4):985-999.e9. doi: 10.1053/j.gastro.2019.11.031. Epub 2019 Nov 22.
2
LKB1 Represses ATOH1 via PDK4 and Energy Metabolism and Regulates Intestinal Stem Cell Fate.
Gastroenterology. 2020 Apr;158(5):1389-1401.e10. doi: 10.1053/j.gastro.2019.12.033. Epub 2020 Jan 11.
3
Krüppel-like Factor 5 Regulates Stemness, Lineage Specification, and Regeneration of Intestinal Epithelial Stem Cells.
Cell Mol Gastroenterol Hepatol. 2020;9(4):587-609. doi: 10.1016/j.jcmgh.2019.11.009. Epub 2019 Nov 25.
4
Bile Acids Signal via TGR5 to Activate Intestinal Stem Cells and Epithelial Regeneration.
Gastroenterology. 2020 Sep;159(3):956-968.e8. doi: 10.1053/j.gastro.2020.05.067. Epub 2020 May 30.
6
MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.
Gastroenterology. 2017 Oct;153(4):1040-1053.e4. doi: 10.1053/j.gastro.2017.07.008. Epub 2017 Jul 14.
7
Elucidating the Proximal Tubule HNF4A Gene Regulatory Network in Human Kidney Organoids.
J Am Soc Nephrol. 2023 Oct 1;34(10):1672-1686. doi: 10.1681/ASN.0000000000000197. Epub 2023 Jul 25.
8
Analysis of Aged Dysfunctional Intestinal Stem Cells.
Methods Mol Biol. 2020;2171:41-52. doi: 10.1007/978-1-0716-0747-3_3.
9
LPA-Dependent signaling regulates regeneration of the intestinal epithelium following irradiation.
Am J Physiol Gastrointest Liver Physiol. 2024 Jun 1;326(6):G631-G642. doi: 10.1152/ajpgi.00269.2023. Epub 2024 Apr 9.
10
Glucagon-Like Peptide-2 Stimulates S-Phase Entry of Intestinal Lgr5+ Stem Cells.
Cell Mol Gastroenterol Hepatol. 2022;13(6):1829-1842. doi: 10.1016/j.jcmgh.2022.02.011. Epub 2022 Feb 23.

引用本文的文献

1
HIF-1 attenuates high-fiber diet-mediated proliferation and stemness of colonic epithelium.
Gut Microbes. 2025 Dec;17(1):2543123. doi: 10.1080/19490976.2025.2543123. Epub 2025 Aug 19.
2
Vagal blockade of the brain-liver axis deters cancer-associated cachexia.
Cell. 2025 Jul 29. doi: 10.1016/j.cell.2025.07.016.
3
Nutrient sensing in intestinal stem cell: Linking dietary nutrients to cellular metabolic regulation.
World J Stem Cells. 2025 Jul 26;17(7):107770. doi: 10.4252/wjsc.v17.i7.107770.
8
Advances and applications of gut organoids: modeling intestinal diseases and therapeutic development.
Life Med. 2025 Mar 7;4(2):lnaf012. doi: 10.1093/lifemedi/lnaf012. eCollection 2025 Apr.
9
The emerging role of intestinal stem cells in ulcerative colitis.
Front Med (Lausanne). 2025 Mar 25;12:1569328. doi: 10.3389/fmed.2025.1569328. eCollection 2025.

本文引用的文献

1
A reinforcing HNF4-SMAD4 feed-forward module stabilizes enterocyte identity.
Nat Genet. 2019 May;51(5):777-785. doi: 10.1038/s41588-019-0384-0. Epub 2019 Apr 15.
2
Genome Toxicity and Impaired Stem Cell Function after Conditional Activation of CreER in the Intestine.
Stem Cell Reports. 2018 Dec 11;11(6):1337-1346. doi: 10.1016/j.stemcr.2018.10.014. Epub 2018 Nov 15.
3
Stem Cell Intrinsic Hexosamine Metabolism Regulates Intestinal Adaptation to Nutrient Content.
Dev Cell. 2018 Oct 8;47(1):112-121.e3. doi: 10.1016/j.devcel.2018.08.011. Epub 2018 Sep 13.
4
Integrative multi-omics analysis of intestinal organoid differentiation.
Mol Syst Biol. 2018 Jun 26;14(6):e8227. doi: 10.15252/msb.20188227.
5
Nutritional Regulation of Intestinal Stem Cells.
Annu Rev Nutr. 2018 Aug 21;38:273-301. doi: 10.1146/annurev-nutr-082117-051644. Epub 2018 May 23.
6
Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging.
Cell Stem Cell. 2018 May 3;22(5):769-778.e4. doi: 10.1016/j.stem.2018.04.001.
7
TFAM is required for maturation of the fetal and adult intestinal epithelium.
Dev Biol. 2018 Jul 15;439(2):92-101. doi: 10.1016/j.ydbio.2018.04.015. Epub 2018 Apr 22.
8
Nutritional Control of Stem Cell Division through S-Adenosylmethionine in Drosophila Intestine.
Dev Cell. 2018 Mar 26;44(6):741-751.e3. doi: 10.1016/j.devcel.2018.02.017.
9
The Force Is Strong with This One: Metabolism (Over)powers Stem Cell Fate.
Trends Cell Biol. 2018 Jul;28(7):551-559. doi: 10.1016/j.tcb.2018.02.007. Epub 2018 Mar 16.
10
A Metabolic Basis for Endothelial-to-Mesenchymal Transition.
Mol Cell. 2018 Feb 15;69(4):689-698.e7. doi: 10.1016/j.molcel.2018.01.010. Epub 2018 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验