Suppr超能文献

使用 C 和 U 特异性 RNase 对细胞非编码 RNA 的 RNA 修饰进行改良作图。

Improved RNA modification mapping of cellular non-coding RNAs using C- and U-specific RNases.

机构信息

Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.

出版信息

Analyst. 2020 Feb 3;145(3):816-827. doi: 10.1039/c9an02111f.

Abstract

Locating ribonucleoside modifications within an RNA sequence requires digestion of the RNA into oligoribonucleotides of amenable size for subsequent analysis by LC-MS (liquid chromatography-mass spectrometry). This approach, widely referred to as RNA modification mapping, is facilitated through ribonucleases (RNases) such as T1 (guanosine-specific), U2 (purine-selective) and A (pyrimidine-specific) among others. Sequence coverage by these enzymes depends on positioning of the recognized nucleobase (such as guanine or purine or pyrimidine) in the sequence and its ribonucleotide composition. Using E. coli transfer RNA (tRNA) and ribosomal RNA (rRNA) as model samples, we demonstrate the ability of complementary nucleobase-specific ribonucleases cusativin (C-specific) and MC1 (U-specific) to generate digestion products that facilitate confident mapping of modifications in regions such as G-rich and pyrimidine-rich segments of RNA, and to distinguish C to U sequence differences. These enzymes also increase the number of oligonucleotide digestion products that are unique to a specific RNA sequence. Further, with these additional RNases, multiple modifications can be localized with high confidence in a single set of experiments with minimal dependence on the individual tRNA abundance in a mixture. The sequence overlaps observed with these complementary digestion products and that of RNase T1 improved sequence coverage to 75% or above. A similar level of sequence coverage was also observed for the 2904 nt long 23S rRNA indicating their utility has no dependence on RNA size. Wide-scale adoption of these additional modification mapping tools could help expedite the characterization of modified RNA sequences to understand their structural and functional role in various living systems.

摘要

要在 RNA 序列中定位核糖核苷修饰,需要将 RNA 消化成适合后续通过 LC-MS(液相色谱-质谱)分析的寡核糖核苷酸。这种方法通常称为 RNA 修饰图谱绘制,通过 T1(鸟嘌呤特异性)、U2(嘌呤选择性)和 A(嘧啶特异性)等核糖核酸酶(RNases)来实现。这些酶的序列覆盖范围取决于序列中被识别的核碱基(如鸟嘌呤或嘌呤或嘧啶)的位置及其核糖核苷酸组成。我们使用大肠杆菌转移 RNA(tRNA)和核糖体 RNA(rRNA)作为模型样本,展示了互补碱基特异性核糖核酸酶 cusativin(C 特异性)和 MC1(U 特异性)生成消化产物的能力,这些产物有助于在富含 G 和富含嘧啶的 RNA 区域等区域中对修饰进行有信心的图谱绘制,并区分 C 到 U 的序列差异。这些酶还增加了与特定 RNA 序列独特的寡核苷酸消化产物的数量。此外,通过这些额外的 RNases,可以在一组实验中高度置信地定位多个修饰,而对混合物中单个 tRNA 的丰度的依赖性最小。与这些互补消化产物观察到的序列重叠与 RNase T1 的序列重叠提高了序列覆盖率至 75%或更高。23S rRNA 的长度为 2904 个核苷酸,其序列覆盖率也达到了类似的水平,这表明它们的用途不依赖于 RNA 的大小。广泛采用这些额外的修饰图谱绘制工具可以帮助加快对修饰 RNA 序列的表征,以了解它们在各种生命系统中的结构和功能作用。

相似文献

2
Novel ribonuclease activity of cusativin from Cucumis sativus for mapping nucleoside modifications in RNA.
Anal Bioanal Chem. 2017 Sep;409(24):5645-5654. doi: 10.1007/s00216-017-0500-x. Epub 2017 Jul 20.
3
Locating chemical modifications in RNA sequences through ribonucleases and LC-MS based analysis.
Methods Enzymol. 2021;658:1-24. doi: 10.1016/bs.mie.2021.06.023. Epub 2021 Jul 27.
4
Enhanced expression and purification of nucleotide-specific ribonucleases MC1 and Cusativin.
Protein Expr Purif. 2022 Feb;190:105987. doi: 10.1016/j.pep.2021.105987. Epub 2021 Oct 9.
5
Improving RNA modification mapping sequence coverage by LC-MS through a nonspecific RNase U2-E49A mutant.
Anal Chim Acta. 2018 Dec 7;1036:73-79. doi: 10.1016/j.aca.2018.08.012. Epub 2018 Aug 7.
7
Enhanced detection of post-transcriptional modifications using a mass-exclusion list strategy for RNA modification mapping by LC-MS/MS.
Anal Chem. 2015 Aug 18;87(16):8433-40. doi: 10.1021/acs.analchem.5b01826. Epub 2015 Jul 28.
9
Using immobilized enzymes to reduce RNase contamination in RNase mapping of transfer RNAs by mass spectrometry.
Anal Bioanal Chem. 2012 Mar;402(9):2701-11. doi: 10.1007/s00216-012-5741-0. Epub 2012 Feb 12.

引用本文的文献

1
Mapping mA Sites on HIV-1 RNA Using Oligonucleotide LC-MS/MS.
Methods Protoc. 2024 Jan 10;7(1):7. doi: 10.3390/mps7010007.
2
In-Gel Cyanoethylation for Pseudouridines Mass Spectrometry Detection of Bacterial Regulatory RNA.
Methods Mol Biol. 2024;2741:273-287. doi: 10.1007/978-1-0716-3565-0_15.
3
Sample transformation in online separations: how chemical conversion advances analytical technology.
Chem Commun (Camb). 2023 Dec 19;60(1):36-50. doi: 10.1039/d3cc03599a.
4
Direct sequencing of total tRNAs by LC-MS/MS.
RNA. 2023 Aug;29(8):1201-1214. doi: 10.1261/rna.079656.123. Epub 2023 May 11.
5
Challenges and emerging trends in liquid chromatography-based analyses of mRNA pharmaceuticals.
J Pharm Biomed Anal. 2023 Feb 5;224:115174. doi: 10.1016/j.jpba.2022.115174. Epub 2022 Nov 21.
6
Human RNase 4 improves mRNA sequence characterization by LC-MS/MS.
Nucleic Acids Res. 2022 Oct 14;50(18):e106. doi: 10.1093/nar/gkac632.
10

本文引用的文献

1
Detection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencing.
Nucleic Acids Res. 2019 Nov 18;47(20):e126. doi: 10.1093/nar/gkz736.
2
Accurate detection of mA RNA modifications in native RNA sequences.
Nat Commun. 2019 Sep 9;10(1):4079. doi: 10.1038/s41467-019-11713-9.
3
Bacterial wobble modifications of NNA-decoding tRNAs.
IUBMB Life. 2019 Aug;71(8):1158-1166. doi: 10.1002/iub.2120. Epub 2019 Jul 8.
4
Sperm RNA code programmes the metabolic health of offspring.
Nat Rev Endocrinol. 2019 Aug;15(8):489-498. doi: 10.1038/s41574-019-0226-2. Epub 2019 Jun 24.
5
Sensitive and quantitative probing of pseudouridine modification in mRNA and long noncoding RNA.
RNA. 2019 Sep;25(9):1218-1225. doi: 10.1261/rna.072124.119. Epub 2019 Jun 21.
6
Nucleotide resolution sequencing of N4-acetylcytidine in RNA.
Methods Enzymol. 2019;621:31-51. doi: 10.1016/bs.mie.2019.02.022. Epub 2019 Mar 12.
7
Epigenetic Modifications in Acute Myeloid Leukemia: Prognosis, Treatment, and Heterogeneity.
Front Genet. 2019 Mar 1;10:133. doi: 10.3389/fgene.2019.00133. eCollection 2019.
8
RNA epigenetics and cardiovascular diseases.
J Mol Cell Cardiol. 2019 Apr;129:272-280. doi: 10.1016/j.yjmcc.2019.03.010. Epub 2019 Mar 14.
9
Oligonucleotide analysis by hydrophilic interaction liquid chromatography-mass spectrometry in the absence of ion-pair reagents.
J Chromatogr A. 2019 Jun 21;1595:39-48. doi: 10.1016/j.chroma.2019.02.016. Epub 2019 Feb 7.
10
tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii.
J Bacteriol. 2019 Apr 9;201(9). doi: 10.1128/JB.00690-18. Print 2019 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验