Wang Hongfeng, Wang Nana, Xu Delai, Ma Qilian, Chen Yang, Xu Shiqiang, Xia Qin, Zhang Yan, Prehn Jochen H M, Wang Guanghui, Ying Zheng
Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu, China.
Department of Pharmacy, The Second Affiliated Hospital of Soochow University , Suzhou, Jiangsu, China.
Autophagy. 2020 Sep;16(9):1683-1696. doi: 10.1080/15548627.2019.1704104. Epub 2019 Dec 18.
Significant evidences indicate that reactive oxygen species (ROS) can induce macroautophagy/autophagy under both physiological and pathological conditions. Although the relationship between ROS and autophagy regulation has been well studied, the basic mechanism by which ROS affects autophagy and the biological role of this regulation are still not fully understood. In the present study we show that multiple MiT-TFE transcription factors including TFEB, TFE3 and MITF, which are master regulators of autophagy and lysosomal biogenesis, can be activated upon direct cysteine oxidation by ROS. Oxidation promotes the nuclear translocation of these MiT-TFE transcription factors by inhibiting the association of them with RRAG GTPases, which in turn leads to enhanced global gene expression level in autophagy-lysosome system. Our study highlights the role of oxidation of MiT-TFE transcription factors in ROS-linked autophagy, and provides novel mechanism that MiT-TFE transcription factors-mediated transcriptional control of autophagy may govern cell homeostasis in response to oxidative stress, a biological process tightly linked to human diseases including neurodegenerative diseases and cancer.
Bafi A1: bafilomycin A; EBSS: Earle's balanced salt solution; EGFP: enhanced green fluorescent protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTORC1: mechanistic target of rapamycin kinase complex 1; ROS: reactive oxygen species; RPS6KB/p70S6K: ribosomal protein S6 kinase B; TFEB: transcription factor EB; WT: wild type.
大量证据表明,活性氧(ROS)在生理和病理条件下均可诱导巨自噬/自噬。尽管ROS与自噬调节之间的关系已得到充分研究,但ROS影响自噬的基本机制以及这种调节的生物学作用仍未完全了解。在本研究中,我们表明,多种MiT-TFE转录因子,包括TFEB、TFE3和MITF,它们是自噬和溶酶体生物发生的主要调节因子,可在被ROS直接氧化半胱氨酸后被激活。氧化通过抑制这些MiT-TFE转录因子与RRAG GTP酶的结合来促进它们的核转位,进而导致自噬-溶酶体系统中整体基因表达水平提高。我们的研究突出了MiT-TFE转录因子氧化在ROS相关自噬中的作用,并提供了新的机制,即MiT-TFE转录因子介导的自噬转录控制可能在应对氧化应激时调节细胞稳态,氧化应激是一个与包括神经退行性疾病和癌症在内的人类疾病紧密相关的生物学过程。
Bafi A1:巴弗洛霉素A;EBSS:Earle平衡盐溶液;EGFP:增强型绿色荧光蛋白;GAPDH:甘油醛-3-磷酸脱氢酶;MAP1LC3B/LC3B:微管相关蛋白1轻链3β;MTORC1:雷帕霉素激酶复合物1的机制靶点;ROS:活性氧;RPS6KB/p70S6K:核糖体蛋白S6激酶B;TFEB:转录因子EB;WT:野生型。