Suppr超能文献

ATF4 介导的 REDD1 和 sestrin2 的上调抑制了延长亮氨酸剥夺期间的 mTORC1 活性。

ATF4-Mediated Upregulation of REDD1 and Sestrin2 Suppresses mTORC1 Activity during Prolonged Leucine Deprivation.

机构信息

Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.

出版信息

J Nutr. 2020 May 1;150(5):1022-1030. doi: 10.1093/jn/nxz309.

Abstract

BACKGROUND

The protein kinase target of rapamycin (mTOR) in complex 1 (mTORC1) is activated by amino acids and in turn upregulates anabolic processes. Under nutrient-deficient conditions, e.g., amino acid insufficiency, mTORC1 activity is suppressed and autophagy is activated. Intralysosomal amino acids generated by autophagy reactivate mTORC1. However, sustained mTORC1 activation during periods of nutrient insufficiency would likely be detrimental to cellular homeostasis. Thus, mechanisms must exist to prevent amino acids released by autophagy from reactivating the kinase.

OBJECTIVE

The objective of the present study was to test whether mTORC1 activity is inhibited during prolonged leucine deprivation through ATF4-dependent upregulation of the mTORC1 suppressors regulated in development and DNA damage response 1 (REDD1) and Sestrin2.

METHODS

Mice (8 wk old; C57Bl/6 × 129SvEV) were food deprived (FD) overnight and one-half were refed the next morning. Mouse embryo fibroblasts (MEFs) deficient in ATF4, REDD1, and/or Sestrin2 were deprived of leucine for 0-16 h. mTORC1 activity and ATF4, REDD1, and Sestrin2 expression were assessed in liver and cell lysates.

RESULTS

Refeeding FD mice resulted in activation of mTORC1 in association with suppressed expression of both REDD1 and Sestrin2 in the liver. In cells in culture, mTORC1 exhibited a triphasic response to leucine deprivation, with an initial suppression followed by a transient reactivation from 2 to 4 h and a subsequent resuppression after 8 h. Resuppression occurred concomitantly with upregulated expression of ATF4, REDD1, and Sestrin2. However, in cells lacking ATF4, neither REDD1 nor Sestrin2 expression was upregulated by leucine deprivation, and resuppression of mTORC1 was absent. Moreover, in cells lacking either REDD1 or Sestrin2, mTORC1 resuppression was attenuated, and in cells lacking both proteins resuppression was further blunted.

CONCLUSIONS

The results suggest that leucine deprivation upregulates expression of both REDD1 and Sestrin2 in an ATF4-dependent manner, and that upregulated expression of both proteins is involved in resuppression of mTORC1 during prolonged leucine deprivation.

摘要

背景

雷帕霉素靶蛋白(mTOR)在复合物 1(mTORC1)中的蛋白激酶受到氨基酸的激活,进而上调合成代谢过程。在营养缺乏的情况下,例如氨基酸不足,mTORC1 的活性受到抑制,自噬被激活。自噬产生的溶酶体内氨基酸重新激活 mTORC1。然而,在营养不足的时期持续激活 mTORC1 可能对细胞内稳态有害。因此,必须存在机制来防止自噬释放的氨基酸重新激活激酶。

目的

本研究旨在通过 ATF4 依赖性上调发育和 DNA 损伤反应 1(REDD1)和 Sestrin2 来检测延长亮氨酸剥夺期间 mTORC1 活性是否受到抑制。

方法

将 8 周龄(C57Bl/6×129SvEV)小鼠禁食过夜,其中一半于次日早上重新喂食。缺乏 ATF4、REDD1 和/或 Sestrin2 的小鼠胚胎成纤维细胞(MEFs)在亮氨酸缺乏 0-16 小时。在肝和细胞裂解物中评估 mTORC1 活性和 ATF4、REDD1 和 Sestrin2 的表达。

结果

重新喂食 FD 小鼠导致 mTORC1 的激活,同时肝中 REDD1 和 Sestrin2 的表达受到抑制。在培养的细胞中,mTORC1 对亮氨酸缺乏表现出三相反应,最初抑制,然后在 2 至 4 小时短暂再激活,然后在 8 小时后再次抑制。再抑制伴随着 ATF4、REDD1 和 Sestrin2 的上调表达。然而,在缺乏 ATF4 的细胞中,亮氨酸缺乏既不会上调 REDD1 也不会上调 Sestrin2 的表达,mTORC1 的再抑制也不存在。此外,在缺乏 REDD1 或 Sestrin2 的细胞中,mTORC1 的再抑制减弱,而在缺乏这两种蛋白质的细胞中,再抑制进一步减弱。

结论

结果表明,亮氨酸剥夺以 ATF4 依赖的方式上调 REDD1 和 Sestrin2 的表达,而两种蛋白质的上调表达都参与了延长亮氨酸剥夺期间 mTORC1 的再抑制。

相似文献

2
Inhibition of mTORC1 through ATF4-induced REDD1 and Sestrin2 expression by Metformin.
BMC Cancer. 2021 Jul 12;21(1):803. doi: 10.1186/s12885-021-08346-x.
4
Specific amino acids regulate Sestrin2 mRNA and protein levels in an ATF4-dependent manner in C2C12 myocytes.
Biochim Biophys Acta Gen Subj. 2022 Sep;1866(9):130174. doi: 10.1016/j.bbagen.2022.130174. Epub 2022 May 18.
5
6
The involvement of Sestrin2 in the effect of IGF-I and leucine on mTROC1 activity in C2C12 and L6 myocytes.
Growth Horm IGF Res. 2021 Aug;59:101406. doi: 10.1016/j.ghir.2021.101406. Epub 2021 Jun 4.
7
Resistance exercise enhances long-term mTORC1 sensitivity to leucine.
Mol Metab. 2022 Dec;66:101615. doi: 10.1016/j.molmet.2022.101615. Epub 2022 Oct 14.
9
Amino acid deprivation induces AKT activation by inducing GCN2/ATF4/REDD1 axis.
Cell Death Dis. 2021 Dec 3;12(12):1127. doi: 10.1038/s41419-021-04417-w.
10
Regulation of Gene Expression by Amino Acids in Animal Cells.
Adv Exp Med Biol. 2021;1332:1-15. doi: 10.1007/978-3-030-74180-8_1.

引用本文的文献

3
Diverse roles of stress-responsive RNP granules in oogenesis and infertility.
Biol Reprod. 2025 Jun 15;112(6):1039-1053. doi: 10.1093/biolre/ioaf057.
7
Impacts of protein quantity and distribution on body composition.
Front Nutr. 2024 May 3;11:1388986. doi: 10.3389/fnut.2024.1388986. eCollection 2024.
8
ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor.
Biology (Basel). 2024 Feb 26;13(3):146. doi: 10.3390/biology13030146.
9
The mTORC2 signaling network: targets and cross-talks.
Biochem J. 2024 Jan 25;481(2):45-91. doi: 10.1042/BCJ20220325.
10
GCN2 mediates access to stored amino acids for somatic maintenance during ageing.
bioRxiv. 2023 Nov 14:2023.11.14.566972. doi: 10.1101/2023.11.14.566972.

本文引用的文献

1
Evidence for a role for Sestrin1 in mediating leucine-induced activation of mTORC1 in skeletal muscle.
Am J Physiol Endocrinol Metab. 2019 May 1;316(5):E817-E828. doi: 10.1152/ajpendo.00522.2018. Epub 2019 Mar 5.
2
mTOR as a central hub of nutrient signalling and cell growth.
Nat Cell Biol. 2019 Jan;21(1):63-71. doi: 10.1038/s41556-018-0205-1. Epub 2019 Jan 2.
3
Mechanism and medical implications of mammalian autophagy.
Nat Rev Mol Cell Biol. 2018 Jun;19(6):349-364. doi: 10.1038/s41580-018-0003-4.
4
SAMTOR is an -adenosylmethionine sensor for the mTORC1 pathway.
Science. 2017 Nov 10;358(6364):813-818. doi: 10.1126/science.aao3265.
6
Recent Insights into the Biological Functions of Sestrins in Health and Disease.
Cell Physiol Biochem. 2017;43(5):1731-1741. doi: 10.1159/000484060. Epub 2017 Oct 19.
7
Regulation of protein and mRNA expression of the mTORC1 repressor REDD1 in response to leucine and serum.
Biochem Biophys Rep. 2016 Dec;8:296-301. doi: 10.1016/j.bbrep.2016.10.003. Epub 2016 Oct 8.
8
mTOR Signaling in Growth, Metabolism, and Disease.
Cell. 2017 Mar 9;168(6):960-976. doi: 10.1016/j.cell.2017.02.004.
9
Is REDD1 a Metabolic Éminence Grise?
Trends Endocrinol Metab. 2016 Dec;27(12):868-880. doi: 10.1016/j.tem.2016.08.005. Epub 2016 Sep 6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验