Suppr超能文献

光动力疗法与肿瘤微环境的生物物理

Photodynamic Therapy and the Biophysics of the Tumor Microenvironment.

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, MD.

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC.

出版信息

Photochem Photobiol. 2020 Mar;96(2):232-259. doi: 10.1111/php.13209. Epub 2020 Mar 5.

Abstract

Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors.

摘要

靶向肿瘤微环境(TME)为调节肿瘤生理学、增强治疗剂的递送、影响免疫反应和克服耐药性提供了机会。光动力疗法(PDT)是一种基于光化学的非热方法,在光激活部位产生反应性分子物质,目前已用于非肿瘤和肿瘤的应用。PDT 所具有的独特机制和精确的时空控制能力使选择性调节或破坏 TME 和癌细胞成为可能。机械应激在肿瘤生长和存活中起着重要作用,对治疗设计和药物输送的影响越来越大,但在 PDT 及其基于 PDT 的组合中研究甚少。本文综述了 PDT 中靶向 TME 的细胞和非细胞成分以及肿瘤和肿瘤相关细胞上的分子靶点的药物工程和生物工程方法。特别强调了机械应力在针对原发性和转移性肿瘤的靶向 PDT 方案及其组合中的作用。

相似文献

1
Photodynamic Therapy and the Biophysics of the Tumor Microenvironment.
Photochem Photobiol. 2020 Mar;96(2):232-259. doi: 10.1111/php.13209. Epub 2020 Mar 5.
2
Grade-targeted nanoparticles for improved hypoxic tumor microenvironment and enhanced photodynamic cancer therapy.
Nanomedicine (Lond). 2021 Feb;16(3):221-235. doi: 10.2217/nnm-2020-0096. Epub 2021 Feb 3.
3
Strategic Design of Conquering Hypoxia in Tumor for Advanced Photodynamic Therapy.
Adv Healthc Mater. 2023 Sep;12(24):e2300530. doi: 10.1002/adhm.202300530. Epub 2023 May 10.
4
From Low to No O-Dependent Hypoxia Photodynamic Therapy (hPDT): A New Perspective.
Acc Chem Res. 2022 Nov 15;55(22):3253-3264. doi: 10.1021/acs.accounts.2c00531. Epub 2022 Nov 2.
6
P-glycoprotein-targeted photodynamic therapy boosts cancer nanomedicine by priming tumor microenvironment.
Theranostics. 2018 Nov 29;8(22):6274-6290. doi: 10.7150/thno.29580. eCollection 2018.
7
An intelligent dual stimuli-responsive photosensitizer delivery system with O-supplying for efficient photodynamic therapy.
Colloids Surf B Biointerfaces. 2018 Jul 1;167:299-309. doi: 10.1016/j.colsurfb.2018.04.011. Epub 2018 Apr 10.
9
Photodynamic therapy: combined modality approaches targeting the tumor microenvironment.
Lasers Surg Med. 2006 Jun;38(5):516-21. doi: 10.1002/lsm.20339.

引用本文的文献

1
5-Aminolevulinic Acid-Mediated Metronomic Photodynamic Therapy for Mouse Mammary Tumors.
Yonago Acta Med. 2025 Apr 18;68(2):114-122. doi: 10.33160/yam.2025.05.004. eCollection 2025 May.
2
Near-infrared photoimmunotherapy: mechanisms, applications, and future perspectives in cancer research.
Antib Ther. 2025 Jan 20;8(1):68-85. doi: 10.1093/abt/tbaf001. eCollection 2025 Jan.
3
Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling.
In Vitro Model. 2023 Jan 27;2(1-2):1-23. doi: 10.1007/s44164-023-00043-2. eCollection 2023 Apr.
4
Participation of lipids in the tumor response to photodynamic therapy and its exploitation for therapeutic gain.
J Lipid Res. 2025 Feb;66(2):100729. doi: 10.1016/j.jlr.2024.100729. Epub 2024 Dec 14.
5
Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review.
Nanomaterials (Basel). 2024 Aug 31;14(17):1424. doi: 10.3390/nano14171424.
7
9
Shedding Light on Chemoresistance: The Perspective of Photodynamic Therapy in Cancer Management.
Int J Mol Sci. 2024 Mar 29;25(7):3811. doi: 10.3390/ijms25073811.
10
Application of Photodynamic Therapy in Cardiology.
Int J Mol Sci. 2024 Mar 11;25(6):3206. doi: 10.3390/ijms25063206.

本文引用的文献

1
The "" World in Photodynamic Therapy.
Austin J Nanomed Nanotechnol. 2014;2(3). Epub 2014 May 29.
4
Porphyrin-lipid assemblies and nanovesicles overcome ABC transporter-mediated photodynamic therapy resistance in cancer cells.
Cancer Lett. 2019 Aug 10;457:110-118. doi: 10.1016/j.canlet.2019.04.037. Epub 2019 May 6.
6
Targeting Tumor-Associated Macrophages in Cancer.
Trends Immunol. 2019 Apr;40(4):310-327. doi: 10.1016/j.it.2019.02.003. Epub 2019 Mar 17.
7
Vascular Effects of Photodynamic Therapy with Curcumin in a Chorioallantoic Membrane Model.
Int J Mol Sci. 2019 Mar 2;20(5):1084. doi: 10.3390/ijms20051084.
8
Targeting Tumor Microenvironment for Cancer Therapy.
Int J Mol Sci. 2019 Feb 15;20(4):840. doi: 10.3390/ijms20040840.
9
Vascular-targeted low dose photodynamic therapy stabilizes tumor vessels by modulating pericyte contractility.
Lasers Surg Med. 2019 Aug;51(6):550-561. doi: 10.1002/lsm.23069. Epub 2019 Feb 19.
10
Photoimmunoconjugates: novel synthetic strategies to target and treat cancer by photodynamic therapy.
Org Biomol Chem. 2019 Mar 6;17(10):2579-2593. doi: 10.1039/c8ob02902d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验