MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
Nat Commun. 2020 Jan 7;11(1):29. doi: 10.1038/s41467-019-13870-3.
Modern high-throughput experiments provide a rich resource to investigate causal determinants of disease risk. Mendelian randomization (MR) is the use of genetic variants as instrumental variables to infer the causal effect of a specific risk factor on an outcome. Multivariable MR is an extension of the standard MR framework to consider multiple potential risk factors in a single model. However, current implementations of multivariable MR use standard linear regression and hence perform poorly with many risk factors. Here, we propose a two-sample multivariable MR approach based on Bayesian model averaging (MR-BMA) that scales to high-throughput experiments. In a realistic simulation study, we show that MR-BMA can detect true causal risk factors even when the candidate risk factors are highly correlated. We illustrate MR-BMA by analysing publicly-available summarized data on metabolites to prioritise likely causal biomarkers for age-related macular degeneration.
现代高通量实验为研究疾病风险的因果决定因素提供了丰富的资源。孟德尔随机化(MR)是利用遗传变异作为工具变量来推断特定风险因素对结果的因果效应。多变量 MR 是对标准 MR 框架的扩展,可在单个模型中考虑多个潜在风险因素。然而,目前多变量 MR 的实现使用标准线性回归,因此在存在多个风险因素时效果不佳。在这里,我们提出了一种基于贝叶斯模型平均(MR-BMA)的两样本多变量 MR 方法,该方法可扩展到高通量实验。在现实的模拟研究中,我们表明,即使候选风险因素高度相关,MR-BMA 也可以检测到真正的因果风险因素。我们通过分析公共可用的代谢物汇总数据来演示 MR-BMA,以确定与年龄相关性黄斑变性相关的可能因果生物标志物。