Suppr超能文献

通过等离子体金纳米颗粒上修饰的氮掺杂石墨烯量子点对电荷转移介导的铁传感和快速光响应的定量理解

Quantitative Understanding of Charge-Transfer-Mediated Fe Sensing and Fast Photoresponse by N-Doped Graphene Quantum Dots Decorated on Plasmonic Au Nanoparticles.

作者信息

Das Ruma, Sugimoto Hiroshi, Fujii Minoru, Giri P K

机构信息

Department of Physics , Indian Institute of Technology Guwahati , Guwahati 781039 , India.

Department of Electrical and Electronics Engineering , Kobe University , Rokkodai, Nada, Kobe 657 , Japan.

出版信息

ACS Appl Mater Interfaces. 2020 Jan 29;12(4):4755-4768. doi: 10.1021/acsami.9b19067. Epub 2020 Jan 17.

Abstract

The formation of a heterostructure with plasmonic nanoparticles drastically alters the optoelectronic properties of graphene quantum dots (GQDs), resulting in exceptional properties. In the present work, we prepare nitrogen-doped GQDs decorated on gold nanoparticles (Au@N-GQDs) by a one-step green reduction method and study its extraordinary fluorescence and photoresponse characteristics. The as-prepared Au@N-GQDs show more than one order of magnitude enhancement in the fluorescence intensity as compared to the bare N-GQDs, which is attributed to hot electron generation and improved absorption in N-GQDs by local field enhancement and the modification of the edge functional groups. Because of the selective coordination to Fe ions, the Au@N-GQDs exhibit extraordinary quenching of fluorescence, with ultrahigh sensitivity for the detection of Fe (<1 nM). A new model for the charge-transfer dynamics is developed involving the Langmuir's law of adsorption to explain the unusual quenching, which strongly deviates from the known models of static/dynamic quenching. The proposed sensor is successfully implemented for the ultrasensitive detection of Fe ions in human serum and Brahmaputra river water samples, representing its high potential applications in clinical as well as environmental diagnosis. Additionally, because of its high absorption in the UV-vis-NIR region and high charge density with long life excitons, the Au@N-GQDs are utilized as photodetectors with ∼10 times faster response than that of bare N-GQDs. The Au@N-GQD-based photodetector possesses a high responsivity of ∼1.36 A/W and a remarkably high external quantum efficiency of ∼292.2%, which is much superior to the GQD-based photodetectors reported till date. The underlying mechanism of ultrafast photoresponse is ascribed to the transfer of hot electrons along with the tunneling of the electrons from Au NPs to N-GQDs as well as the defect reduction of N-GQDs by the incorporation of Au NPs. Without the use of any charge transporting layer, the outstanding performance of N-GQD-based plasmonic photodetector opens up unique opportunities for future high-speed optoelectronic devices.

摘要

与等离子体纳米颗粒形成异质结构会极大地改变石墨烯量子点(GQDs)的光电特性,从而产生优异的性能。在本工作中,我们通过一步绿色还原法制备了装饰在金纳米颗粒上的氮掺杂GQDs(Au@N-GQDs),并研究了其非凡的荧光和光响应特性。与裸N-GQDs相比,所制备的Au@N-GQDs的荧光强度增强了一个多数量级,这归因于热电子的产生以及通过局部场增强和边缘官能团的修饰提高了N-GQDs的吸收。由于与铁离子的选择性配位,Au@N-GQDs表现出非凡的荧光猝灭,对铁(<1 nM)的检测具有超高灵敏度。我们建立了一个涉及朗缪尔吸附定律的电荷转移动力学新模型来解释这种异常猝灭,该模型与已知的静态/动态猝灭模型有很大偏差。所提出的传感器成功用于人体血清和雅鲁藏布江河水样中铁离子的超灵敏检测,表明其在临床以及环境诊断中的高潜在应用价值。此外,由于Au@N-GQDs在紫外-可见-近红外区域具有高吸收以及具有长寿命激子的高电荷密度,它们被用作光探测器,其响应速度比裸N-GQDs快约10倍。基于Au@N-GQD的光探测器具有约1.36 A/W的高响应度和约292.2%的显著高外量子效率,这远优于迄今报道的基于GQD的光探测器。超快光响应的潜在机制归因于热电子的转移以及电子从金纳米颗粒到N-GQDs的隧穿,以及通过掺入金纳米颗粒减少了N-GQDs的缺陷。在不使用任何电荷传输层的情况下,基于N-GQD的等离子体光探测器的出色性能为未来的高速光电器件开辟了独特的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验