Suppr超能文献

在线纯化:促进药物化学中药物合成与工艺开发的关键要素。

In-Line Purification: A Key Component to Facilitate Drug Synthesis and Process Development in Medicinal Chemistry.

作者信息

Weeranoppanant Nopphon, Adamo Andrea

机构信息

Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Longhard Bangsaen Road, Muang, Chonburi 02131, Thailand.

School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley 555 Moo 1 Payupnai, Wangchan, Rayong 21210 Thailand.

出版信息

ACS Med Chem Lett. 2019 Dec 12;11(1):9-15. doi: 10.1021/acsmedchemlett.9b00491. eCollection 2020 Jan 9.

Abstract

In-line purification is an important tool for flow chemistry. It enables effective handling of unstable intermediates and integration of multiple synthetic steps. The integrated flow synthesis is useful for drug synthesis and process development in medicinal chemistry. In this article, we overview current states of in-line purification methods. In particular, we focus on four common methods: scavenger column, distillation, nanofiltration, and extraction. Examples of their applications are provided.

摘要

在线纯化是流动化学的一项重要工具。它能够有效处理不稳定中间体,并整合多个合成步骤。集成流动合成在药物合成和药物化学工艺开发中很有用。在本文中,我们概述了在线纯化方法的当前状态。特别地,我们重点介绍四种常用方法: scavenger柱、蒸馏、纳滤和萃取。并提供了它们的应用实例。

相似文献

1
In-Line Purification: A Key Component to Facilitate Drug Synthesis and Process Development in Medicinal Chemistry.
ACS Med Chem Lett. 2019 Dec 12;11(1):9-15. doi: 10.1021/acsmedchemlett.9b00491. eCollection 2020 Jan 9.
2
An Automated Microwave-Assisted Synthesis Purification System for Rapid Generation of Compound Libraries.
J Lab Autom. 2016 Jun;21(3):459-69. doi: 10.1177/2211068215590580. Epub 2015 Jun 17.
3
Membrane separation in green chemical processing: solvent nanofiltration in liquid phase organic synthesis reactions.
Ann N Y Acad Sci. 2003 Mar;984:123-41. doi: 10.1111/j.1749-6632.2003.tb05996.x.
4
Oxetanes: Recent Advances in Synthesis, Reactivity, and Medicinal Chemistry.
Chem Rev. 2016 Oct 12;116(19):12150-12233. doi: 10.1021/acs.chemrev.6b00274. Epub 2016 Sep 15.
5
Global medicinal chemistry and GPCR conference: interview with Stevan Djuric.
Future Med Chem. 2018 Apr 1;10(8):837-838. doi: 10.4155/fmc-2018-0002. Epub 2018 Mar 27.
6
Recent applications of microwave irradiation to medicinal chemistry.
Future Med Chem. 2010 Feb;2(2):169-76. doi: 10.4155/fmc.09.144.
8
Ontologies in medicinal chemistry: current status and future challenges.
Curr Top Med Chem. 2013;13(5):576-90. doi: 10.2174/1568026611313050003.
9
Integrated Platform for Expedited Synthesis-Purification-Testing of Small Molecule Libraries.
ACS Med Chem Lett. 2017 Mar 28;8(4):461-465. doi: 10.1021/acsmedchemlett.7b00054. eCollection 2017 Apr 13.
10
Click chemistry, a potent tool in medicinal sciences.
Curr Med Chem. 2015;22(17):2022-50. doi: 10.2174/0929867322666150421110819.

引用本文的文献

1
A Coalescing Filter for Liquid-Liquid Separation and Multistage Extraction in Continuous-Flow Chemistry.
Org Process Res Dev. 2024 May 6;28(5):1979-1989. doi: 10.1021/acs.oprd.4c00012. eCollection 2024 May 17.
2
From monomer to micelle: a facile approach to the multi-step synthesis of block copolymers inline purification.
Chem Sci. 2023 Jun 6;14(32):8466-8473. doi: 10.1039/d3sc01819a. eCollection 2023 Aug 16.
3
Continuous flow synthesis of pyridinium salts accelerated by multi-objective Bayesian optimization with active learning.
Chem Sci. 2023 Jul 12;14(30):8061-8069. doi: 10.1039/d3sc01303k. eCollection 2023 Aug 2.
4
Determining Phase Separation Dynamics with an Automated Image Processing Algorithm.
Org Process Res Dev. 2023 Mar 14;27(4):627-639. doi: 10.1021/acs.oprd.2c00357. eCollection 2023 Apr 21.
5
Towards Antibiotic Synthesis in Continuous-Flow Processes.
Molecules. 2023 Feb 2;28(3):1421. doi: 10.3390/molecules28031421.
6
Flow synthesis of oxadiazoles coupled with sequential in-line extraction and chromatography.
Beilstein J Org Chem. 2022 Feb 25;18:232-239. doi: 10.3762/bjoc.18.27. eCollection 2022.
7
Continuous Flow Synthesis of Anticancer Drugs.
Molecules. 2021 Nov 19;26(22):6992. doi: 10.3390/molecules26226992.
8
Coupling biocatalysis with high-energy flow reactions for the synthesis of carbamates and β-amino acid derivatives.
Beilstein J Org Chem. 2021 Feb 4;17:379-384. doi: 10.3762/bjoc.17.33. eCollection 2021.

本文引用的文献

1
A robotic platform for flow synthesis of organic compounds informed by AI planning.
Science. 2019 Aug 9;365(6453). doi: 10.1126/science.aax1566.
2
High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine.
Beilstein J Org Chem. 2018 Mar 8;14:583-592. doi: 10.3762/bjoc.14.45. eCollection 2018.
3
Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing.
Chemistry. 2018 Feb 21;24(11):2776-2784. doi: 10.1002/chem.201706004. Epub 2018 Jan 31.
4
On-demand synthesis of organozinc halides under continuous flow conditions.
Nat Protoc. 2018 Jan;13(1):324-334. doi: 10.1038/nprot.2017.141. Epub 2018 Jan 11.
5
Automating drug discovery.
Nat Rev Drug Discov. 2018 Feb;17(2):97-113. doi: 10.1038/nrd.2017.232. Epub 2017 Dec 15.
6
Chemoenzymatic Synthesis in Flow Reactors: A Rapid and Convenient Preparation of Captopril.
ChemistryOpen. 2017 Jul 28;6(5):668-673. doi: 10.1002/open.201700082. eCollection 2017 Oct.
7
Nanofiltration-Enabled In Situ Solvent and Reagent Recycle for Sustainable Continuous-Flow Synthesis.
ChemSusChem. 2017 Sep 11;10(17):3435-3444. doi: 10.1002/cssc.201701120. Epub 2017 Aug 16.
8
Grignard Reagents on a Tab: Direct Magnesium Insertion under Flow Conditions.
Org Lett. 2017 Jul 21;19(14):3747-3750. doi: 10.1021/acs.orglett.7b01590. Epub 2017 Jun 28.
10
Suzuki-Miyaura cross-coupling optimization enabled by automated feedback.
React Chem Eng. 2016 Dec 1;1(6):658-666. doi: 10.1039/c6re00153j. Epub 2016 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验