Suppr超能文献

参与 DNA 修复的碱基切除修复酶在哺乳动物细胞中形成的氧化 DNA-蛋白质交联物。

Oxidative DNA-protein crosslinks formed in mammalian cells by abasic site lyases involved in DNA repair.

机构信息

Department of Pharmacological Sciences, Stony Brook University, Renaissance School of Medicine, Basic Science Tower 8-140, Stony Brook, New York, 11794, USA.

Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC, 27709-2233, USA.

出版信息

DNA Repair (Amst). 2020 Mar;87:102773. doi: 10.1016/j.dnarep.2019.102773. Epub 2020 Jan 9.

Abstract

Free radical attack on C1' of deoxyribose forms the oxidized abasic (AP) site 2-deoxyribonolactone (dL). In vitro, dL traps the major base excision DNA repair enzyme DNA polymerase beta (Polβ) in covalent DNA-protein crosslinks (DPC) via the enzyme's N-terminal lyase activity acting on 5'-deoxyribose-5-phosphate residues. We previously demonstrated formation of Polβ-DPC in cells challenged with oxidants generating significant levels of dL. Proteasome inhibition under 1,10-copper-ortho-phenanthroline (CuOP) treatment significantly increased Polβ-DPC accumulation and trapped ubiquitin in the DPC, with Polβ accounting for 60-70 % of the total ubiquitin signal. However, the identity of the remaining oxidative ubiquityl-DPC remained unknown. In this report, we surveyed whether additional AP lyases are trapped in oxidative DPC in mammalian cells in culture. Poly(ADP-ribose) polymerase 1 (PARP1), Ku proteins, DNA polymerase λ (Polλ), and the bifunctional 8-oxoguanine DNA glycosylase 1 (OGG1), were all trapped in oxidative DPC in mammalian cells. We also observed significant trapping of Polλ, PARP1, and OGG1 in cells treated with the alkylating agent methylmethane sulfonate (MMS), in addition to dL-inducing agents. Ku proteins, in contrast, followed a pattern of trapping similar to that for Polβ: MMS failed to produce Ku-DPC, while treatment with CuOP or (less effectively) HO gave rise to significant Ku-DPC. Unexpectedly, NEIL1 and NEIL3 were trapped following HO treatment, but not detectably in cells exposed to CuOP. The half-life of all the AP lyase-DPC ranged from 15-60 min, consistent with their active repair. Accordingly, CuOP treatment under proteasome inhibition significantly increased the observed levels of DPC in cultured mammalian cells containing PARP1, Ku protein, Polλ, and OGG1 proteins. As seen for Polβ, blocking the proteasome led to the accumulation of DPC containing ubiquitin. Thus, the ubiquitin-dependent proteolytic mechanisms that control Polβ-DPC removal may also apply to a broad array of oxidative AP lyase-DPC, preventing their toxic accumulation in cells.

摘要

自由基攻击脱氧核糖的 C1' 形成氧化的无碱基(AP)位点 2-脱氧核糖醇(dL)。在体外,dL 通过酶的 N 端裂解酶活性作用于 5'-脱氧核糖-5-磷酸残基,在主要的碱基切除 DNA 修复酶 DNA 聚合酶 β(Polβ)上捕获共价 DNA-蛋白质交联(DPC)。我们之前的研究表明,在受到产生大量 dL 的氧化剂挑战的细胞中,形成了 Polβ-DPC。在 1,10-铜-邻菲咯啉(CuOP)处理下抑制蛋白酶体显著增加了 Polβ-DPC 的积累,并将泛素捕获在 DPC 中,其中 Polβ 占总泛素信号的 60-70%。然而,其余的氧化泛素-DPC 的身份仍然未知。在本报告中,我们调查了在培养的哺乳动物细胞中,是否有其他的 AP 裂解酶被捕获在氧化 DPC 中。多聚(ADP-核糖)聚合酶 1(PARP1)、Ku 蛋白、DNA 聚合酶 λ(Polλ)和双功能 8-氧鸟嘌呤 DNA 糖基化酶 1(OGG1)在哺乳动物细胞中的氧化 DPC 中都被捕获。我们还观察到,在用烷基化剂甲磺酸甲酯(MMS)处理细胞时,除了 dL 诱导剂外,Polλ、PARP1 和 OGG1 也显著被捕获。相比之下,Ku 蛋白的捕获模式与 Polβ 相似:MMS 不能产生 Ku-DPC,而用 CuOP 或(效果较差)HO 处理则会导致显著的 Ku-DPC。出乎意料的是,NEIL1 和 NEIL3 在 HO 处理后被捕获,但在暴露于 CuOP 的细胞中则无法检测到。所有 AP 裂解酶-DPC 的半衰期为 15-60 分钟,与它们的主动修复一致。因此,在蛋白酶体抑制下用 CuOP 处理可显著增加含有 PARP1、Ku 蛋白、Polλ 和 OGG1 蛋白的培养哺乳动物细胞中的 DPC 水平。与 Polβ 一样,阻断蛋白酶体导致含有泛素的 DPC 积累。因此,控制 Polβ-DPC 去除的泛素依赖性蛋白水解机制可能也适用于广泛的氧化 AP 裂解酶-DPC,防止其在细胞中的毒性积累。

相似文献

1
Oxidative DNA-protein crosslinks formed in mammalian cells by abasic site lyases involved in DNA repair.
DNA Repair (Amst). 2020 Mar;87:102773. doi: 10.1016/j.dnarep.2019.102773. Epub 2020 Jan 9.
2
When DNA repair goes wrong: BER-generated DNA-protein crosslinks to oxidative lesions.
DNA Repair (Amst). 2016 Aug;44:103-109. doi: 10.1016/j.dnarep.2016.05.014. Epub 2016 May 20.
3
C-terminal residues of DNA polymerase β and E3 ligase required for ubiquitin-linked proteolysis of oxidative DNA-protein crosslinks.
DNA Repair (Amst). 2024 Nov;143:103756. doi: 10.1016/j.dnarep.2024.103756. Epub 2024 Aug 28.
4
Enzyme mechanism-based, oxidative DNA-protein cross-links formed with DNA polymerase β in vivo.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8602-7. doi: 10.1073/pnas.1501101112. Epub 2015 Jun 29.
5
Long-patch base excision DNA repair of 2-deoxyribonolactone prevents the formation of DNA-protein cross-links with DNA polymerase beta.
J Biol Chem. 2005 Nov 25;280(47):39095-103. doi: 10.1074/jbc.M506480200. Epub 2005 Sep 27.
7
Transient OGG1, APE1, PARP1 and Polβ expression in an Alzheimer's disease mouse model.
Mech Ageing Dev. 2013 Oct;134(10):467-77. doi: 10.1016/j.mad.2013.09.002. Epub 2013 Oct 11.
8
AP endonuclease-independent DNA base excision repair in human cells.
Mol Cell. 2004 Jul 23;15(2):209-20. doi: 10.1016/j.molcel.2004.06.003.
9
Ku antigen displays the AP lyase activity on a certain type of duplex DNA.
Biochim Biophys Acta. 2016 Sep;1864(9):1244-1252. doi: 10.1016/j.bbapap.2016.04.011. Epub 2016 Apr 26.
10
Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA.
FEBS J. 2006 Apr;273(8):1620-9. doi: 10.1111/j.1742-4658.2006.05192.x.

引用本文的文献

1
2
DNA-Protein Cross-Links Derived from Abasic DNA Lesions: Recent Progress and Future Directions.
Chem Res Toxicol. 2025 Jun 16;38(6):997-1005. doi: 10.1021/acs.chemrestox.5c00125. Epub 2025 May 19.
5
AUF1 Recognizes 8-Oxo-Guanosine Embedded in DNA and Stimulates APE1 Endoribonuclease Activity.
Antioxid Redox Signal. 2023 Sep;39(7-9):411-431. doi: 10.1089/ars.2022.0105. Epub 2023 Apr 11.
6
OGG1 in the Kidney: Beyond Base Excision Repair.
Oxid Med Cell Longev. 2022 Dec 30;2022:5774641. doi: 10.1155/2022/5774641. eCollection 2022.
7
Targeting DNA-Protein Crosslinks Post-Translational Modifications.
Front Mol Biosci. 2022 Jul 4;9:944775. doi: 10.3389/fmolb.2022.944775. eCollection 2022.
8
Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases.
Front Cell Neurosci. 2022 Jun 30;16:852002. doi: 10.3389/fncel.2022.852002. eCollection 2022.
9
Human TDP1, APE1 and TREX1 repair 3'-DNA-peptide/protein cross-links arising from abasic sites in vitro.
Nucleic Acids Res. 2022 Apr 22;50(7):3638-3657. doi: 10.1093/nar/gkac185.
10
Perspectives on formaldehyde dysregulation: Mitochondrial DNA damage and repair in mammalian cells.
DNA Repair (Amst). 2021 Sep;105:103134. doi: 10.1016/j.dnarep.2021.103134. Epub 2021 May 11.

本文引用的文献

1
2
Repair pathway for PARP-1 DNA-protein crosslinks.
DNA Repair (Amst). 2019 Jan;73:71-77. doi: 10.1016/j.dnarep.2018.11.004. Epub 2018 Nov 12.
3
DNA-protein cross-links: Formidable challenges to maintaining genome integrity.
DNA Repair (Amst). 2018 Nov;71:190-197. doi: 10.1016/j.dnarep.2018.08.024. Epub 2018 Aug 23.
4
8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions.
Redox Biol. 2018 Apr;14:669-678. doi: 10.1016/j.redox.2017.11.008. Epub 2017 Nov 10.
5
Formation and repair of DNA-protein crosslink damage.
Sci China Life Sci. 2017 Oct;60(10):1065-1076. doi: 10.1007/s11427-017-9183-4. Epub 2017 Oct 30.
6
Mechanisms of DNA-protein crosslink repair.
Nat Rev Mol Cell Biol. 2017 Sep;18(9):563-573. doi: 10.1038/nrm.2017.56. Epub 2017 Jun 28.
7
Reactivity of Nucleic Acid Radicals.
Adv Phys Org Chem. 2016;50:119-202. doi: 10.1016/bs.apoc.2016.02.001.
8
DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.
Genes (Basel). 2016 Aug 31;7(9):57. doi: 10.3390/genes7090057.
9
When DNA repair goes wrong: BER-generated DNA-protein crosslinks to oxidative lesions.
DNA Repair (Amst). 2016 Aug;44:103-109. doi: 10.1016/j.dnarep.2016.05.014. Epub 2016 May 20.
10
Ku antigen displays the AP lyase activity on a certain type of duplex DNA.
Biochim Biophys Acta. 2016 Sep;1864(9):1244-1252. doi: 10.1016/j.bbapap.2016.04.011. Epub 2016 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验