Suppr超能文献

取代脯氨酸的构象景观

Conformational landscape of substituted prolines.

作者信息

Ganguly Himal Kanti, Basu Gautam

机构信息

Department of Biophysics, Bose Institute, P-1/12 CIT scheme VII M, Kolkata, 700054, India.

出版信息

Biophys Rev. 2020 Feb;12(1):25-39. doi: 10.1007/s12551-020-00621-8. Epub 2020 Jan 17.

Abstract

The cyclic side chain of the amino acid proline confers unique conformational restraints on its backbone and side chain dihedral angles. This affects two equilibria-one at the backbone (cis/trans) and the other at the side chain (endo/exo). Substitutions on the proline ring impose additional steric and stereoelectronic effects that can further modulate both these equilibria, which in turn can also affect the backbone dihedral angle (ϕ, ψ) preferences. In this review, we have explored the conformational landscape of several termini capped mono-(2-, 3-, 4-, and 5-) substituted proline derivatives in the Cambridge Structural Database, correlating observed conformations with the nature of substituents and deciphering the underlying interactions for the observed structural biases. The impact of incorporating these derivatives within model peptides and proteins are also discussed for selected cases. Several of these substituents have been used to introduce bioorthogonal functionality and modulate structure-specific ligand recognition or used as spectroscopic probes. The incorporation of these diversely applicable functional groups, coupled with their ability to define an amino acid conformation via stereoelectronic effects, have a broad appeal among chemical biologists, molecular biophysicists, and medicinal chemists.

摘要

氨基酸脯氨酸的环状侧链对其主链和侧链二面角具有独特的构象限制。这影响了两个平衡——一个在主链(顺式/反式),另一个在侧链(内型/外型)。脯氨酸环上的取代会产生额外的空间和立体电子效应,这可以进一步调节这两个平衡,进而也会影响主链二面角(ϕ,ψ)偏好。在本综述中,我们在剑桥结构数据库中探索了几种末端封端的单(2-、3-、4-和5-)取代脯氨酸衍生物的构象格局,将观察到的构象与取代基的性质相关联,并解读观察到的结构偏差背后的相互作用。对于选定的案例,还讨论了将这些衍生物纳入模型肽和蛋白质中的影响。其中一些取代基已被用于引入生物正交功能并调节结构特异性配体识别,或用作光谱探针。这些具有多种适用性的官能团的引入,再加上它们通过立体电子效应定义氨基酸构象的能力,在化学生物学家、分子生物物理学家和药物化学家当中具有广泛的吸引力。

相似文献

1
Conformational landscape of substituted prolines.
Biophys Rev. 2020 Feb;12(1):25-39. doi: 10.1007/s12551-020-00621-8. Epub 2020 Jan 17.
2
The Distinct Conformational Landscapes of 4S-Substituted Prolines That Promote an endo Ring Pucker.
Chemistry. 2019 Aug 27;25(48):11356-11364. doi: 10.1002/chem.201902382. Epub 2019 Aug 5.
5
The impact of pyrrolidine hydroxylation on the conformation of proline-containing peptides.
J Org Chem. 2005 Feb 18;70(4):1306-15. doi: 10.1021/jo0490043.
6
Stereoelectronic tuning of the structure and stability of the trp cage miniprotein.
J Am Chem Soc. 2006 Sep 27;128(38):12430-1. doi: 10.1021/ja0648458.
8
Probing the role of proline in peptide hormones. NMR studies of bradykinin and related peptides.
Biochem Pharmacol. 1990 Jul 1;40(1):41-8. doi: 10.1016/0006-2952(90)90176-l.
10
Impact of cis-proline analogs on peptide conformation.
Biopolymers. 2006 Apr 5;81(5):392-406. doi: 10.1002/bip.20431.

引用本文的文献

1
Genetic Diagnosis of Oculocutaneous Albinism Type 1A: A Novel Variant.
Clin Case Rep. 2025 Aug 25;13(9):e70818. doi: 10.1002/ccr3.70818. eCollection 2025 Sep.
2
Structural Adaptations of Bacterial Grx3 to Temperature: Pro29 Is Essential for Cold Adaptation in sp. Grx3.
ACS Omega. 2025 May 26;10(22):23848-23857. doi: 10.1021/acsomega.5c03414. eCollection 2025 Jun 10.
4
PhiSiCal-Checkup: A Bayesian framework to validate amino acid conformations within experimental protein structures.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2416301121. doi: 10.1073/pnas.2416301121. Epub 2025 Jan 2.
5
Illuminating the multiple Lewis acidity of triaryl-boranes atropisomeric dative adducts.
Chem Sci. 2024 Aug 26;15(38):15679-89. doi: 10.1039/d4sc00925h.
6
Sodium Channel β Subunits-An Additional Element in Animal Tetrodotoxin Resistance?
Int J Mol Sci. 2024 Jan 25;25(3):1478. doi: 10.3390/ijms25031478.
7
Conformationally constrained cyclic grafted peptidomimetics targeting protein-protein interactions.
Pept Sci (Hoboken). 2023 Sep;115(5). doi: 10.1002/pep2.24328. Epub 2023 Jul 20.
8
Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders.
Matrix Biol Plus. 2023 Dec 14;21:100139. doi: 10.1016/j.mbplus.2023.100139. eCollection 2024 Feb.
10
Incorporation of Aliphatic Proline Residues into Recombinantly Produced Insulin.
ACS Chem Biol. 2023 Dec 15;18(12):2574-2581. doi: 10.1021/acschembio.3c00561. Epub 2023 Nov 14.

本文引用的文献

1
Stabilization of the triple helix in collagen mimicking peptides.
Org Biomol Chem. 2019 Sep 21;17(35):8031-8047. doi: 10.1039/c9ob01646e. Epub 2019 Aug 29.
3
The Distinct Conformational Landscapes of 4S-Substituted Prolines That Promote an endo Ring Pucker.
Chemistry. 2019 Aug 27;25(48):11356-11364. doi: 10.1002/chem.201902382. Epub 2019 Aug 5.
4
19F NMR as a versatile tool to study membrane protein structure and dynamics.
Biol Chem. 2019 Sep 25;400(10):1277-1288. doi: 10.1515/hsz-2018-0473.
5
Electronic and Steric Control of n→π* Interactions: Stabilization of the α-Helix Conformation without a Hydrogen Bond.
Chembiochem. 2019 Apr 1;20(7):963-967. doi: 10.1002/cbic.201800785. Epub 2019 Mar 7.
6
A novel peptide conformation: the γ-bend ribbon.
Org Biomol Chem. 2018 Oct 31;16(42):7947-7958. doi: 10.1039/c8ob02279h.
7
Fluorinated Prolines as Conformational Tools and Reporters for Peptide and Protein Chemistry.
Biochemistry. 2018 Oct 30;57(43):6132-6143. doi: 10.1021/acs.biochem.8b00787. Epub 2018 Oct 16.
8
Synthesis of new fluorinated proline analogues from polyfluoroalkyl β-ketoacetals and ethyl isocyanoacetate.
Chem Commun (Camb). 2018 Aug 23;54(69):9683-9686. doi: 10.1039/c8cc05912h.
9
Asymmetric Syntheses of (2 R,3 S)-3-Hydroxyproline and (2 S,3 S)-3-Hydroxyproline.
Org Lett. 2018 Jul 6;20(13):4135-4139. doi: 10.1021/acs.orglett.8b01736. Epub 2018 Jun 26.
10
Evaluation of β-Amino Acid Replacements in Protein Loops: Effects on Conformational Stability and Structure.
Chembiochem. 2018 Mar 16;19(6):604-612. doi: 10.1002/cbic.201700580. Epub 2018 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验