Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
Molecules. 2020 Jan 28;25(3):559. doi: 10.3390/molecules25030559.
Antibiotic resistance is an escalating, worldwide problem. Due to excessive use of antibiotics, multidrug-resistant bacteria have become a serious threat and a major global healthcare problem of the 21st century. This fact creates an urgent need for new and effective antimicrobials. The common strategies for antibiotic discovery are based on either modifying existing antibiotics or screening compound libraries, but these strategies have not been successful in recent decades. An alternative approach could be to use gene-specific oligonucleotides, such as peptide nucleic acid (PNA) oligomers, that can specifically target any single pathogen. This approach broadens the range of potential targets to any gene with a known sequence in any bacterium, and could significantly reduce the time required to discover new antimicrobials or their redesign, if resistance arises. We review the potential of PNA as an antibacterial molecule. First, we describe the physicochemical properties of PNA and modifications of the PNA backbone and nucleobases. Second, we review the carriers used to transport PNA to bacterial cells. Furthermore, we discuss the PNA targets in antibacterial studies focusing on antisense PNA targeting bacterial mRNA and rRNA.
抗生素耐药性是一个日益严重的全球性问题。由于抗生素的过度使用,多药耐药菌已成为严重威胁,并成为 21 世纪全球主要的医疗保健问题。这一事实迫切需要新的和有效的抗菌药物。抗生素发现的常用策略是基于修饰现有的抗生素或筛选化合物库,但这些策略在最近几十年都没有成功。另一种方法可能是使用基因特异性寡核苷酸,例如肽核酸 (PNA) 寡聚物,它可以特异性地针对任何单一病原体。这种方法将潜在目标的范围扩大到任何细菌中具有已知序列的任何基因,如果出现耐药性,这可以显著缩短发现新抗菌药物或其重新设计所需的时间。我们综述了 PNA 作为一种抗菌分子的潜力。首先,我们描述了 PNA 的物理化学性质以及 PNA 主链和核碱基的修饰。其次,我们综述了用于将 PNA 转运到细菌细胞的载体。此外,我们讨论了在专注于反义 PNA 靶向细菌 mRNA 和 rRNA 的抗菌研究中 PNA 的靶标。