State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
Angew Chem Int Ed Engl. 2020 May 18;59(21):8285-8292. doi: 10.1002/anie.202001679. Epub 2020 Mar 3.
Resilient and compressible three-dimensional nanomaterials comprising polymers, carbon, and metals have been prepared in diverse forms. However, the creation of thermostable elastic ceramic aerogels remains an enormous challenge. We demonstrate an in situ synthesis strategy to develop biomimetic silica nanofibrous (SNF) aerogels with superelasticity by integrating flexible electrospun silica nanofibers and rubber-like Si-O-Si bonding networks. The stable bonding structure among nanofibers is in situ constructed along with a fibrous freeze-shaping process. The resultant SNF aerogels exhibit integrated properties of ultralow density (>0.25 mg cm ), temperature-invariant superelasticity up to 1100 °C, and robust fatigue resistance over one million compressions. The ceramic nature also endows the aerogels with fire resistance and ultralow thermal conductivity. The successful synthesis of the SNF aerogels opens new pathways for the design of superelastic ceramic aerogels in a structurally adaptive and scalable form.
已经制备了多种形式的由聚合物、碳和金属组成的具有弹性和可压缩性的三维纳米材料。然而,热稳定弹性陶瓷气凝胶的制备仍然是一个巨大的挑战。我们展示了一种原位合成策略,通过集成柔性电纺二氧化硅纳米纤维和橡胶状的 Si-O-Si 键合网络,开发出具有超弹性的仿生二氧化硅纳米纤维(SNF)气凝胶。在纤维冷冻成型过程中,原位构建了纳米纤维之间的稳定键合结构。所得到的 SNF 气凝胶表现出综合性能,包括超低密度(>0.25mg/cm)、温度不变的超弹性可达 1100°C,以及超过一百万次压缩的强耐疲劳性。陶瓷特性还赋予气凝胶防火和超低导热性。SNF 气凝胶的成功合成为设计具有结构适应性和可扩展性的超弹性陶瓷气凝胶开辟了新途径。