Suppr超能文献

用稀土元素掩蔽磷酸盐可使二膦酰基胺-锌化学传感器对砷酸盐进行选择性检测。

Masking Phosphate with Rare-Earth Elements Enables Selective Detection of Arsenate by Dipycolylamine-Zn Chemosensor.

机构信息

Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.

Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.

出版信息

Sci Rep. 2020 Feb 14;10(1):2656. doi: 10.1038/s41598-020-59585-0.

Abstract

Functional reassessment of the phosphate-specific chemosensors revealed their potential as arsenate detectors. A series of dipicolylamine (Dpa)-Zn chemosensors were screened, among which acridine Dpa-Zn chemosensor showed the highest capability in sensing arsenate. The presence of excess Zn improved sensitivity and strengthened the binding between acridine Dpa-Zn complex to arsenate as well as phosphate. However, due to their response to phosphate, these sensors are not suited for arsenate detection when phosphate is also present. This study demonstrated for the first time that rare-earth elements could effectively mask phosphate, allowing the specific fluorescence detection of arsenate in phosphate-arsenate coexisting systems. In addition, detection of arsenate contamination in the real river water samples and soil samples was performed to prove its practical use. This sensor was further employed for the visualization of arsenate and phosphate uptake in vegetables and flowering plants for the first time, as well as in the evaluation of a potent inhibitor of arsenate/phosphate uptake.

摘要

功能再评估表明,磷酸盐特异性化学传感器有望成为砷酸盐的检测工具。我们筛选了一系列二吡啶胺(Dpa)-Zn 化学传感器,其中吖啶 Dpa-Zn 化学传感器在检测砷酸盐方面表现出最高的能力。过量 Zn 的存在提高了灵敏度,并加强了吖啶 Dpa-Zn 配合物与砷酸盐以及磷酸盐的结合。然而,由于它们对磷酸盐的响应,当磷酸盐也存在时,这些传感器不适合用于检测砷酸盐。本研究首次证明,稀土元素可以有效地掩蔽磷酸盐,从而可以在磷酸盐-砷酸盐共存体系中特异性地荧光检测砷酸盐。此外,我们还对实际河水和土壤样本中的砷酸盐污染进行了检测,以证明其实际用途。该传感器还首次用于可视化蔬菜和开花植物中砷酸盐和磷酸盐的摄取,并用于评估一种有效的砷酸盐/磷酸盐摄取抑制剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0716/7021768/e9c6d26ed484/41598_2020_59585_Fig1_HTML.jpg

相似文献

3
Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor.
J Am Chem Soc. 2008 Sep 10;130(36):12095-101. doi: 10.1021/ja803262w. Epub 2008 Aug 14.
7
ZnAlO Nanomaterial as a Naked-Eye Arsenate Sensor: A Combined Experimental and Computational Mechanistic Approach.
ACS Appl Mater Interfaces. 2022 Jul 20;14(28):32457-32473. doi: 10.1021/acsami.2c04875. Epub 2022 Jul 7.
9
Influence of Zn(II) on the adsorption of arsenate onto ferrihydrite.
Environ Sci Technol. 2012 Dec 18;46(24):13152-9. doi: 10.1021/es300729m. Epub 2012 Dec 3.
10
CeO Nanowire-BODIPY-Adenosine Triphosphate Fluorescent Sensing Platform for Highly Specific and Sensitive Detection of Arsenate.
Anal Chem. 2018 Dec 18;90(24):14507-14513. doi: 10.1021/acs.analchem.8b04354. Epub 2018 Dec 6.

本文引用的文献

2
Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L.) at different developmental stages.
Sci Total Environ. 2019 Jun 1;667:532-539. doi: 10.1016/j.scitotenv.2019.02.394. Epub 2019 Feb 26.
3
Arsenic and cadmium contents in Brazilian rice from different origins can vary more than two orders of magnitude.
Food Chem. 2019 Jul 15;286:644-650. doi: 10.1016/j.foodchem.2019.02.043. Epub 2019 Feb 19.
5
Innovative isotopic method to evaluate bioaccumulation of As and MTEs in Vitis vinifera.
Sci Total Environ. 2019 Feb 15;651(Pt 1):1126-1136. doi: 10.1016/j.scitotenv.2018.09.222. Epub 2018 Sep 20.
6
Infants' dietary arsenic exposure during transition to solid food.
Sci Rep. 2018 May 8;8(1):7114. doi: 10.1038/s41598-018-25372-1.
8
Distinct arsenic metabolites following seaweed consumption in humans.
Sci Rep. 2017 Jun 20;7(1):3920. doi: 10.1038/s41598-017-03883-7.
9
Quantifying Inorganic Arsenic and Other Water-Soluble Arsenic Species in Human Milk by HPLC/ICPMS.
Anal Chem. 2017 Jun 6;89(11):6265-6271. doi: 10.1021/acs.analchem.7b01276. Epub 2017 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验