Suppr超能文献

基于深度学习的心外膜脂肪组织体积和衰减定量预测无症状患者的主要不良心血管事件。

Deep Learning-Based Quantification of Epicardial Adipose Tissue Volume and Attenuation Predicts Major Adverse Cardiovascular Events in Asymptomatic Subjects.

机构信息

Department of Imaging and Medicine and the Smidt Heart Institute (E.E., S.C., H.G., S.C., R.J.H.M., P.J.S., B.K.T., D.S.B.), Cedars-Sinai Medical Center, Los Angeles, CA.

Biomedical Imaging Research Institute (P.A.M., F.C., X.C., M.G., A.R., D.D.), Cedars-Sinai Medical Center, Los Angeles, CA.

出版信息

Circ Cardiovasc Imaging. 2020 Feb;13(2):e009829. doi: 10.1161/CIRCIMAGING.119.009829. Epub 2020 Feb 17.

Abstract

BACKGROUND

Epicardial adipose tissue (EAT) volume (cm) and attenuation (Hounsfield units) may predict major adverse cardiovascular events (MACE). We aimed to evaluate the prognostic value of fully automated deep learning-based EAT volume and attenuation measurements quantified from noncontrast cardiac computed tomography.

METHODS

Our study included 2068 asymptomatic subjects (56±9 years, 59% male) from the EISNER trial (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) with long-term follow-up after coronary artery calcium measurement. EAT volume and mean attenuation were quantified using automated deep learning software from noncontrast cardiac computed tomography. MACE was defined as myocardial infarction, late (>180 days) revascularization, and cardiac death. EAT measures were compared to coronary artery calcium score and atherosclerotic cardiovascular disease risk score for MACE prediction.

RESULTS

At 14±3 years, 223 subjects suffered MACE. Increased EAT volume and decreased EAT attenuation were both independently associated with MACE. Atherosclerotic cardiovascular disease risk score, coronary artery calcium, and EAT volume were associated with increased risk of MACE (hazard ratio [95%CI]: 1.03 [1.01-1.04]; 1.25 [1.19-1.30]; and 1.35 [1.07-1.68], <0.01 for all) and EAT attenuation was inversely associated with MACE (hazard ratio, 0.83 [95% CI, 0.72-0.96]; =0.01), with corresponding Harrell C statistic of 0.76. MACE risk progressively increased with EAT volume ≥113 cm and coronary artery calcium ≥100 AU and was highest in subjects with both (<0.02 for all). In 1317 subjects, EAT volume was correlated with inflammatory biomarkers C-reactive protein, myeloperoxidase, and adiponectin reduction; EAT attenuation was inversely related to these biomarkers.

CONCLUSIONS

Fully automated EAT volume and attenuation quantification by deep learning from noncontrast cardiac computed tomography can provide prognostic value for the asymptomatic patient, without additional imaging or physician interaction.

摘要

背景

心外膜脂肪组织(EAT)体积(cm)和衰减(亨氏单位)可预测主要不良心血管事件(MACE)。我们旨在评估基于深度学习的全自动 EAT 体积和衰减测量值从非对比心脏 CT 量化的预后价值。

方法

我们的研究纳入了来自 EISNER 试验(非侵入性影像学研究早期识别亚临床动脉粥样硬化)的 2068 例无症状受试者(56±9 岁,59%为男性),并在冠状动脉钙测量后进行了长期随访。使用自动深度学习软件从非对比心脏 CT 量化 EAT 体积和平均衰减。比较 EAT 测量值与冠状动脉钙评分和动脉粥样硬化性心血管疾病风险评分对 MACE 的预测。

结果

在 14±3 年时,有 223 例受试者发生 MACE。增加的 EAT 体积和降低的 EAT 衰减均与 MACE 独立相关。动脉粥样硬化性心血管疾病风险评分、冠状动脉钙和 EAT 体积与 MACE 风险增加相关(风险比[95%CI]:1.03[1.01-1.04];1.25[1.19-1.30];和 1.35[1.07-1.68],均 <0.01),EAT 衰减与 MACE 呈负相关(风险比,0.83[95%CI,0.72-0.96];=0.01),哈雷尔 C 统计值为 0.76。随着 EAT 体积≥113cm 和冠状动脉钙≥100AU,MACE 风险逐渐增加,在同时存在这两种情况的患者中风险最高(均 <0.02)。在 1317 例患者中,EAT 体积与炎症生物标志物 C 反应蛋白、髓过氧化物酶和脂联素减少相关;EAT 衰减与这些生物标志物呈负相关。

结论

基于深度学习的非对比心脏 CT 全自动 EAT 体积和衰减量化可为无症状患者提供预后价值,无需额外的影像学检查或医生干预。

相似文献

4
DEep LearnIng-based QuaNtification of epicardial adipose tissue predicts MACE in patients undergoing stress CMR.
Atherosclerosis. 2024 Oct;397:117549. doi: 10.1016/j.atherosclerosis.2024.117549. Epub 2024 Apr 18.
7
Epicardial adipose tissue and coronary artery calcium predict incident myocardial infarction and death in HIV-infected patients.
J Cardiovasc Comput Tomogr. 2015 Nov-Dec;9(6):553-8. doi: 10.1016/j.jcct.2015.08.002. Epub 2015 Aug 15.
8
Incremental diagnostic value of epicardial adipose tissue for the detection of functionally relevant coronary artery disease.
Atherosclerosis. 2015 Sep;242(1):161-6. doi: 10.1016/j.atherosclerosis.2015.07.005. Epub 2015 Jul 7.
10
Deep-Learning for Epicardial Adipose Tissue Assessment With Computed Tomography: Implications for Cardiovascular Risk Prediction.
JACC Cardiovasc Imaging. 2023 Jun;16(6):800-816. doi: 10.1016/j.jcmg.2022.11.018. Epub 2023 Feb 8.

引用本文的文献

2
Epicardial Adipose Tissue: A Multimodal Imaging Diagnostic Perspective.
Medicina (Kaunas). 2025 May 23;61(6):961. doi: 10.3390/medicina61060961.
4
The Role of Imaging in Cardiovascular Prevention: A Comprehensive Review.
J Cardiovasc Echogr. 2025 Jan-Mar;35(1):8-18. doi: 10.4103/jcecho.jcecho_26_25. Epub 2025 Apr 30.
5
Role of Artificial Intelligence in Congenital Heart Disease and Interventions.
J Soc Cardiovasc Angiogr Interv. 2025 Mar 18;4(3Part B):102567. doi: 10.1016/j.jscai.2025.102567. eCollection 2025 Mar.
6
Pericoronary adipose tissue: potential for pathological diagnosis and therapeutic applications.
Cardiovasc Interv Ther. 2025 Apr 5. doi: 10.1007/s12928-025-01126-5.
7
Targeting Epicardial/Pericardial Adipose Tissue in Cardiovascular Diseases: A Novel Therapeutic Strategy.
Rev Cardiovasc Med. 2025 Mar 13;26(3):26128. doi: 10.31083/RCM26128. eCollection 2025 Mar.
9
Nonsurgical management of cardiac perforation within epicardial adipose tissue by temporary transvenous pacemaker lead.
HeartRhythm Case Rep. 2024 Oct 24;11(2):125-128. doi: 10.1016/j.hrcr.2024.10.022. eCollection 2025 Feb.

本文引用的文献

1
Fully Automated CT Quantification of Epicardial Adipose Tissue by Deep Learning: A Multicenter Study.
Radiol Artif Intell. 2019 Nov 27;1(6):e190045. doi: 10.1148/ryai.2019190045.
2
Deep learning-based stenosis quantification from coronary CT Angiography.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10949. doi: 10.1117/12.2512168. Epub 2019 Mar 15.
3
Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review.
J Am Coll Cardiol. 2019 Mar 26;73(11):1317-1335. doi: 10.1016/j.jacc.2018.12.054.
6
Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT.
IEEE Trans Med Imaging. 2018 Aug;37(8):1835-1846. doi: 10.1109/TMI.2018.2804799. Epub 2018 Feb 9.
7
Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: A Multicenter Study.
JACC Cardiovasc Imaging. 2018 Nov;11(11):1654-1663. doi: 10.1016/j.jcmg.2018.01.020. Epub 2018 Mar 14.
8
Automatic Calcium Scoring in Low-Dose Chest CT Using Deep Neural Networks With Dilated Convolutions.
IEEE Trans Med Imaging. 2018 Feb;37(2):615-625. doi: 10.1109/TMI.2017.2769839.
10
Detecting human coronary inflammation by imaging perivascular fat.
Sci Transl Med. 2017 Jul 12;9(398). doi: 10.1126/scitranslmed.aal2658.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验